# INOUSTRRLL RUTOMHTION 

USER MANUAL



# VARIABLE FREQUENCY DRIVE SG200 

Basic User Manual

# Operation Manual 

 SG200 Series VFD

## Preface

Thanks for choosing our products.
SG200 series variable-frequency drive (VFD) is newly-designed vector-type VFD by our company for controlling asynchronous AC inductance motors. Through adopting the most advanced speed sensor-less vector control technology and DSP control system, as well as enhancing the reliability and adaptability to the environment, our product is armed with optimized functions, flexible applications and stable performances.

The vector control performance of SG200 series VFD is as outstanding as that of the leading sophisticated VFDs in worldwide market. Its integrated speed and torque control can satisfy various application demands, in the meantime, its excellent anti-trip performance and strong adaptability to worse grid, temperature, humidity and dust guarantees its outstanding reliability and stability.

SG200 series VFD adopts modular to fulfill various customized needs. The powerful speed control, torque control, simple PLC, flexible input/output terminals, pulse frequency reference and traverse control can satisfy various requirements from complicated drives to reduce system cost and improve system reliability.

SG200 series VFD adopts electromagnetic compatibility design to ensure strong antielectromagnetic interference capacity while realizing low noise and weakening electromagnetic interference in the application sites.

This manual presents installation and configuration, parameters setup, fault diagnoses and daily maintenance and relative precautions to customers. Please read this manual carefully before installation to ensure SG200 series VFD is installed and operated properly to give full play to its excellent performance.

Our company reserves the right to update the information of our products without prior notice.

## Contents

1 Safety precautions ..... 1
1.1 What this chapter contains ..... 1
1.2 Safety definition ..... 1
1.3 Warning symbols ..... 1
1.4 Safety guidelines ..... 2
1.4.1 Delivery and installation .....  2
1.4.2 Commission and running ..... 3
1.4.3 Maintenance and replacement of components ..... 3
1.4.4 Scrap treatment ..... 4
2 Quick start ..... 5
2.1 What this chapter contains ..... 5
2.2 Unpacking inspection ..... 5
2.3 Application confirmation ..... 5
2.4 Installation environment ..... 5
2.5 Installation confirmation ..... 6
2.6 Basic commissioning ..... 6
3 Product overview ..... 7
3.1 What this chapter contains ..... 7
3.2 Basic principles ..... 7
3.3 Product specifications ..... 8
3.4 Nameplate ..... 10
3.5 Type designation key ..... 10
3.6 Rated specifications ..... 10
4 Installation guidelines ..... 12
4.1 What this chapter contains ..... 12
4.2 Mechanical installation ..... 12
4.2.1 Installation environment ..... 12
4.2.2 Installation direction ..... 13
4.2.3 Installation manner ..... 14
4.2.4 Multiple installations ..... 14
4.2.5 Vertical installation ..... 16
4.2.6 Tilt installation ..... 17
4.3 Standard wiring ..... 17
4.3.1 Wiring diagram of main circuit ..... 17
4.3.2 Terminals figure of main circuit ..... 19
4.3.3 Wiring of terminals in main circuit ..... 23
5 Keypad operation procedure ..... 26
5.1 What this chapter contains ..... 26
5.2 Keypad ..... 26
5.3 Keypad displaying ..... 28
5.4 Keypad operation ..... 28
5.4.1 How to modify the function codes of the VFD ..... 28
5.4.2 How to set the password of the VFD ..... 29
5.4.3 How to watch the VFD state through function codes ..... 30
6 Function parameters ..... 31
6.1 What this chapter contains ..... 31
6.2 SG200 general series function parameters ..... 31
F00 Group Basic functions ..... 32
F01 Group Start and stop control ..... 39
F02 Group Motor ..... 45
F03 Group Vector control ..... 47
F04 Group SVPWM control ..... 51
F05 Group Input terminals ..... 55
F06 Group Output terminals ..... 63
F07 Group Human-Machine Interface ..... 67
F08 Group Enhanced function ..... 73
F09 Group PID control ..... 81
F10 Group Simple PLC and multi-step speed control ..... 85
F11 Group Protective parameters ..... 88
F13 Group Enhanced function parameters ..... 92
F14 Group Serial communication ..... 95
F17 Group Monitoring function ..... 95
F24 Group Water supply ..... 97
7 Basic operation instruction ..... 100
7.1 What this chapter contains ..... 100
7.2 First powering on ..... 100
7.3 Vector control ..... 102
7.4 Torque control ..... 103
7.5 Parameters of the motor ..... 104
7.6 Start and stop control ..... 105
7.7 Frequency setting ..... 106
7.8 Simple PLC ..... 108
7.9 Multi-step speed running ..... 108
7.10 PID control ..... 109
7.10.1 General steps of PID parameters setting: ..... 110
7.10.2 PID inching ..... 110
7.11 Pulse counter ..... 112
8 Fault tracking ..... 113
8.1 What this chapter contains ..... 113
8.2 Alarm and fault indications ..... 113
8.3 How to reset ..... 113
8.4 Fault history ..... 113
8.5 Fault instruction and solution ..... 113
8.5.1 Fault instruction and solution ..... 113
8.5.2 Other states ..... 117
8.6 Common fault analysis ..... 118
8.6.1 The motor does not work ..... 118
8.6.2 Motor vibration ..... 119
8.6.3 Overvoltage ..... 119
8.6.4 Undervoltage ..... 120
8.6.5 Abnormal motor heat ..... 121
8.6.6 VFD overheating ..... 121
8.6.7 Stall during the acceleration of the motor ..... 122
8.6.8 Overcurrent ..... 123
8.7 VFD system interference troubleshooting ..... 123
8.8 Maintenance and hardware diagnostics ..... 124
8.8.1 Overcurrent ..... 124
8.8.2 Cooling fan ..... 126
8.8.3 Capacitors ..... 127
8.8.3.1 Reforming the capacitors ..... 127
8.8.3.2 Change electrolytic capacitors ..... 128
8.8.4 Power cable ..... 128
9 Communication protocol ..... 129
9.1 What this chapter contains ..... 129
9.2 Brief instruction to MODBUS protocol ..... 129
9.3 Application of the VFD ..... 130
9.3.1 RS485 ..... 130
9.3.2 RTU mode ..... 130
9.4 RTU command code and communication data illustration ..... 133
9.4.1 RTU mode ..... 133
9.4.2 ASCII mode ..... 137
9.5 The definition of data address ..... 140
9.5.1 The rules of parameter address of the function codes ..... 140
9.5.2 The address instruction of other function in MODBUS ..... 140
9.5.3 Fieldbus ratio values ..... 144
9.5.4 Fault message response ..... 144
9.6 Example of writing and reading ..... 146
9.6.1 Example of reading command 03 H ..... 146
9.6.2 Example of writing command 06 H ..... 147
9.6.3 Example of continuous writing command 10 H ..... 148
Appendix A Technical data ..... 151
A. 1 What this chapter contains ..... 151
A. 2 Ratings ..... 151
A.2.1 Capacity ..... 151
A.2.2 Derating ..... 151
A.2.2.2 Altitude derating ..... 151
A. 3 Electric power network specification ..... 152
A. 4 Motor connection data ..... 152
A.4.1 EMC compatibility and motor cable length ..... 152
A. 5 Applicable standards ..... 152
A.5.1 CE marking ..... 153
A.5.2 Compliance with the European EMC Directive ..... 153
A. 6 EMC regulations ..... 153
A.6.1 Category C2 ..... 154
A.6.2 Category C3 ..... 154
Appendix B Dimension drawings ..... 155
B. 1 What this chapter contains ..... 155
B. 2 Keypad structure ..... 155
B.2.1 Structure chart ..... 155
B.2.2 Installation chart ..... 155
B. 3 VFD dimension ..... 156
Appendix C Peripheral options and parts ..... 162
C. 1 Power supply ..... 163
C. 2 Cables ..... 163
C.2.1 Power cables ..... 163
C.2.2 Control cables ..... 164
C.2.3 Routing the cables ..... 165
C.2.4 Checking the insulation ..... 166
C. 3 Breaker, electromagnetic contactor and leakage protection switch ..... 166
C. 4 Braking system ..... 167
C.4.1 Select the braking components ..... 167
C.4.2 Select the brake resistor cables ..... 169
C.4.3 Place the brake resistor ..... 169

## 1 Safety precautions

### 1.1 What this chapter contains

Read this manual carefully and follow all safety precautions before moving, installing, operating and servicing the variable-frequency drive (VFD). If ignored, physical injury or death may occur, or damage may occur to the devices.
If any physical injury or death or damage to the devices occurs for ignoring to the safety precautions in the manual, our company will not be responsible for any damages and we are not legally bound in any manner.

### 1.2 Safety definition

| Danger: | Serious physical injury or even death may occur if not follow <br> relevant requirements <br> Physical injury or damage to the devices may occur if not follow <br> relevant requirements |
| :--- | :--- |
| Warning: | Physical hurt may occur if not follow relevant requirements |
| People working on the device should take part in professional |  |
| Note: | electrical and safety training, receive the certification and be <br> familiar with all steps and requirements of installing, <br> commissioning, operating and maintaining the device to avoid any |
| Qualified | emergency. |
| electricians: |  |

### 1.3 Warning symbols

Warnings caution you about conditions which can result in serious injury or death and/or damage to the equipment, and advice on how to avoid the danger. Following warning symbols are used in this manual:

| Symbols | Name | Instruction | Abbreviation |
| :---: | :---: | :--- | :---: |
| Danger | Electrical <br> Danger | Serious physical injury or even death <br> may occur if not follow the relative <br> requirements | General <br> danger |
| Harning | Physical injury or damage to the <br> devices may occur if not follow the <br> relative requirements |  |  |
| Hot | Electrostatic <br> discharge | Damage to the PCBA board may occur <br> if not follow the relative requirements | Sides of the device may become hot. <br> Do not touch. |
| Note | Note | Physical hurt may occur if not follow the <br> relative requirements | Note |

### 1.4 Safety guidelines

| $4$ | - Only qualified electricians are allowed to operate on the VFD. <br> - Do not carry out any wiring and inspection or changing components when the power supply is applied. Ensure all input power supply is disconnected before wiring and checking and always wait for at least the time designated on the VFD or until the DC bus voltage is less than 36 V . Below is the table of the waiting time: |
| :---: | :---: |
|  | VFD model $\quad$ Minimum waiting time |
|  | $380 \mathrm{~V} 0007-0132$ 5 minutes |
|  | $380 \mathrm{~V} 0160-0355$ 15 minutes |
|  | 380 V 0400 and higher $\quad 25$ minutes |
|  | - Do not refit the VFD unauthorized; otherwise fire, electric shock or other injury may occur. |
| SIII | - The base of the heat sink may become hot during running. Do not touch to avoid hurt. |
| $\theta$ | - The electrical parts and components inside the VFD are electrostatic. Take measurements to avoid electrostatic discharge during relevant operation. |

### 1.4.1 Delivery and installation

|  | Please install the VFD on fire-retardant material and keep the VFD away from <br> combustible materials. <br> - <br> Connect the braking optional parts (braking resistors, braking units or feedback <br> units) according to the wiring diagram. |
| :--- | :--- |
| - Do not operate on the VFD if there is any damage or components loss to the |  |
| VFD. |  |
| Do not touch the VFD with wet items or body, otherwise electric shock may |  |
| occur. |  |

## Note:

- Select appropriate moving and installing tools to ensure a safe and normal running of the VFD and avoid physical injury or death. For physical safety, the erector should take some mechanical protective measures, such as wearing exposure shoes and working uniforms.
- Ensure to avoid physical shock or vibration during delivery and installation.
- Do not carry the VFD by its cover. The cover may fall off.
- Install away from children and other public places.
- Please use the VFD on appropriate condition (See chapter2.4Installation environment).
- Don't allow screws, cables and other conductive items to fall inside the VFD.
- The leakage current of the VFD may be above 3.5 mA during operation. Ground with proper
techniques and ensure the grounding resistor is less than $10 \Omega$. The conductivity of PE grounding conductor is the same as that of the phase conductor (with the same cross sectional area). For the 0037 and higher models, the cross sectional area of the PE grounding conductor can be slightly less than the recommended area.
- $\quad R, S$ and $T$ are the input terminals of the power supply, while $U, V$ and $W$ are the motor terminals. Please connect the input power cables and motor cables with proper techniques; otherwise the damage to the VFD may occur.


### 1.4.2 Commission and running

| -Disconnect all power supplies applied to the VFD before the terminal wiring <br> and wait for at least the designated time after disconnecting the power supply. <br> - <br> High voltage is present inside the VFD during running. Do not carry out any <br> operation except for the keypad setting. It must be noted that the control <br> terminal of SG200 inverter is ELV (Extra Low Voltage) circuit, which cannot <br> be connected directly to the accessible terminals of other devices if no <br> protective isolation measure is taken. For instance, RS485 terminal of the <br> inverter can be connected to RS232 interface of the PC only after a converter <br> with protective isolation is connected between them. <br> - The VFD may start up by itself when F01.21=1. Do not get close to the VFD <br> and motor. <br> The VFD cannot be used as "Emergency-stop device". <br> The VFD cannot be used to break the motor suddenly. A mechanical braking <br> device should be provided. |
| :---: | :--- | :--- |

## Note:

- Do not switch on or off the input power supply of the VFD frequently.
- For the VFD that has been stored for a long time, check and fix the capacitance and try to run it again before utilization (see8.8Maintenance and hardware diagnostics).
- Cover the front board before running, otherwise electric shock may occur.


### 1.4.3 Maintenance and replacement of components



## Note:

- Please select proper torque to tighten screws.
- Keep the VFD, parts and components away from combustible materials during maintenance and component replacement.
- Do not carry out any insulation voltage-endurance test on the VFD and do not measure the control circuit of the VFD by megameter.
- Carry out a sound anti-electrostatic protection to the VFD and its internal components during maintenance and component replacement.


### 1.4.4 Scrap treatment

| - There are heavy metals in the VFD. Deal with it as industrial waste. |
| :--- | | When the life cycle ends, the product should enter the recycling system. |
| :--- |
| Dhe normal waste stream. |

## 2 Quick start

### 2.1 What this chapter contains

This chapter mainly describes the basic guidelines during the installation and commission procedures on the VFD, which you may follow to install and commission the VFD quickly.

### 2.2 Unpacking inspection

Check as followings after receiving products:

1. Check whether the packing box is damaged or dampened. If yes, contact local dealers or SGT offices.
2. Check the model identifier on the exterior surface of the packing box is consistent with the purchased model. If no, contact local dealers or SGT offices.
3. Check whether the interior surface of packing box is abnormal, for example, in wet condition, or whether the enclosure of the VFD is damaged or cracked. If yes, contact local dealers or SGT offices.
4. Check whether the name plate of the VFD is consistent with the model identifier on the exterior surface of the packing box. If not, contact local dealers or SGT offices.
5. Check whether the accessories (including user's manual and control keypad) inside the packing box are complete. If not, contact local dealers or SGT offices.

### 2.3 Application confirmation

Check the machine before beginning to use the VFD:

1. Check the load type to verify that there is no overload of the VFD during work and check whether the VFD needs to modify the power degree.
2. Check that the actual current of the motor is less than the rated current of the VFD.
3. Check that the control accuracy of the load is the same of the VFD.
4. Check that the incoming supply voltage is correspondent to the rated voltage of the VFD.

### 2.4 Installation environment

Check as followings before the actual installation and usage:

1. Check that the ambient temperature of the VFD is below $40^{\circ} \mathrm{C}$. If exceeds, de-rate $1 \%$ for every additional $1^{\circ} \mathrm{C}$. Additionally, the VFD cannot be used if the ambient temperature is above $50^{\circ} \mathrm{C}$.

Note: for the cabinet VFD, the ambient temperature means the air temperature inside the cabinet.
2. Check that the ambient temperature of the VFD in actual usage is above $-10^{\circ} \mathrm{C}$. If not, add heating facilities.
Note: For the cabinet VFD, the ambient temperature means the air temperature inside the cabinet
3. Check whether the VFD installation site altitude is less than 1000 meters. If yes, the VFD can run at the rated power.

> When the installation site altitude exceeds 1000 m , de-rate $1 \%$ for every increase of 100 m ; when the installation site altitude exceeds 3000 m , consult the local SGT dealer or office.
> 4. Check that the humidity of the actual usage site is below $90 \%$ and condensation is not allowed If not, add additional protection to the VFDs
> 5. Check that the actual usage site is away from direct sunlight and foreign objects cannot enter the VFD. If not, add additional protective measures.
> 6. Check that there is no conductive dust or flammable gas in the actual usage site. If not, add additional protection to VFDs.

### 2.5 Installation confirmation

Check as followings after the installation:

1. Check that the input and output cables meet the need of actual load.
2. Check that the accessories of the VFD are correctly and properly installed. The installation cables should meet the needs of every component (including input reactors, input filters, output reactors, output filters, DC reactors, braking units and braking resistors).
3. Check that the VFD is installed on non-flammable materials and the calorific accessories (reactors and braking resistors) are away from flammable materials.
4. Check that all control cables and power cables are run separately and the layout complies with EMC requirement.
5. Check that all grounding systems are properly grounded according to the VFD requirements.

6 . Check that the free space during installation is sufficient according to the instructions in user's manual.
7. Check that the installation conforms to the instructions in user's manual. The drive must be installed in an upright position.
8. Check that the external connection terminals are tightly fastened and the torque is appropriate.
9. Check that there are no screws, cables and other conductive items left in the VFD. If not, get them out.

### 2.6 Basic commissioning

Complete the basic commissioning as followings before actual utilization:

1. Select the motor type, set correct motor parameters and select control mode of the VFD according to the actual motor parameters.
2. Auto-tune. If possible, de-coupled from the motor load to start dynamic auto-tune. Or if not, static auto-tune is available.
3. Adjust the ACC/DEC time according to the actual running of the load.
4. Commission the device via jogging and check that the rotation direction is as required. If not, change the rotation direction by changing the wiring of motor.
5. Set all control parameters and then operate.

## 3 Product overview

### 3.1 What this chapter contains

The chapter briefly describes the operation principle, product characteristics, layout, nameplate and type designation information.

### 3.2 Basic principles

SG200 series VFDs are wall, flange and floor mountable devices for controlling asynchronous AC inductance motors.

The diagram below shows the main circuit diagram of the VFD. The rectifier converts three-phase AC voltage to DC voltage. The capacitor bank of the intermediate circuit stabilizes the DC voltage. The converter transforms the DC voltage back to AC voltage for the AC motor. The brake pipe connects the external braking resistor to the intermediate DC circuit to consume the feedback energy when the voltage in the circuit exceeds its maximum limit.


Figure 3-1 Main circuit diagram (for the 0037 and lower models)


Figure 3-2 Main circuit diagram (for the 0045 and higher models)

## Note:

1. The 0045 and higher models support external optional DC reactors. Before connecting, it is necessary to remove the copper strip between P1 and (+).
2. The 0037 and lower models have standard embedded braking units and the braking resistor is optional.
3. The 0045 and higher models can be installed with optional braking units and the braking unit and resistor are optional.

### 3.3 Product specifications

| Function |  | Specification |
| :---: | :---: | :---: |
| Input | Input voltage (V) | AC 3PH 380V(-15\%)-440V(+10\%) <br> AC 3PH $575 \mathrm{~V}(-15 \%)-690 \mathrm{~V}(+10 \%)$ |
|  | Input current (A) | Refer to the product rated value |
|  | Input frequency (Hz) | 50 Hz or 60 Hz <br> Allowed range: $47-63 \mathrm{~Hz}$ |
| Output | Output voltage (V) | $0-$ Input voltage |
|  | Output current (A) | Refer to the product rated value |
|  | Output power (kW) | Refer to the product rated value |
|  | Output frequency (Hz) | $0-400 \mathrm{~Hz}$ |
| Technical control feature | Control mode | SVPWM, SVC |
|  | Motor type | Asynchronous motor |
|  | Speed ratio | Asynchronous motor 1: 100 (SVC) |
|  | Speed control accuracy | $\pm 0.2 \%$ (sensorless vector control) |
|  | Speed fluctuation | $\pm 0.3 \%$ (sensorless vector control) |
|  | Torque response | $<20 \mathrm{~ms}$ (sensorless vector control) |
|  | Torque control accuracy | 10\%(sensorless vector control) |
|  | Starting torque | Asynchronous motor: 0.5Hz/150\% (SVC) |
|  | Overload capability | Heavy Duty: <br> $150 \%$ of rated current: 1 minute <br> $180 \%$ of rated current: 10 seconds <br> $200 \%$ of rated current: 1 second Normal Duty: <br> 120\% of rated current: 1 minute <br> $150 \%$ of rated current: 10 seconds <br> $180 \%$ of rated current: 1 second |
| Running <br> control <br> feature | Frequency setting | Digital setting, analog setting, pulse frequency setting, multi-step speed running setting, simple PLC setting, PID setting, MODBUS communication setting. <br> Shift between the set combination and set channel. |
|  | Auto voltage adjustment | Keep a stable voltage automatically when the grid voltage transients |


| Function |  | Specification |
| :---: | :---: | :---: |
|  | Fault protection | Provide over 30 fault protection functions: overcurrent, overvoltage, undervoltage, overheating, phase loss and overload, etc. |
|  | Speed tracking | Restart the rotating motor smoothly |
| Peripheral interface | Terminal analog input resolution | $\leq 20 \mathrm{mV}$ |
|  | Terminal switch input resolution | $\leq 2 \mathrm{~ms}$ |
|  | Analog input | 1 channels (Al2) 0-10V / 0-20mA 1 channel (AI3) -10-10V |
|  | Analog output | 1 channels (AO1) 0-10V / 0-20mA |
|  | Digital input | 8 channels common input, max. frequency: 1 kHz , internal impedance: $3.3 \mathrm{k} \Omega$; <br> 1 channel high speed input, max. frequency: 50 kHz |
|  | Digital output | 1 channel high speed pulse output, max. frequency: 50kHz; <br> 1 channel Y terminal open collector pole output |
|  | Relay output | 2 channels programmable relay output TA1 NO, TB1 NC, TC1 common terminal TA2 NO, TB2 NC, TC2 common terminal Contactor capability: 3A/AC250V,1A/DC30V |
| Others | Mountable method | Wall, flange and floor mountable |
|  | Temperature of the running environment | $-10-50^{\circ} \mathrm{C}$, derating is required if the temperature is above $40^{\circ} \mathrm{C}$. If the ambient temperature is above $40^{\circ} \mathrm{C}$, de-rate $1 \%$ for every additional $1^{\circ} \mathrm{C}$. |
|  | Ingress protection | IP20 |
|  | Cooling | Air-cooling |
|  | Pollution level | Level 2 |
|  | Braking unit | Built in 0037 and lower models. For other models, it is an optional part. |
|  | EMC filter | 380 V series products can meet the requirements of IEC61800-3 C3 <br> External optional filter: meet the requirement of IEC61800-3 C2 |

### 3.4 Nameplate



Figure 3-3 Nameplate
Note: This is the example of the nameplate for the standard products, and CE\TUV marked according to the actual situations.

### 3.5 Type designation key

The type designation contains information on the VFD. The user can find the type designation on the type designation label attached to the VFD or the simple nameplate.

## SG200-0015-4T <br> A <br> B

Figure 3-4 Product type

| Key | $\quad$ Instructions |
| :---: | :--- |
| A | SG200 : Product name |
| B | 4-digit code: output power. <br> "0011:" 11 $\mathrm{kW} /$ / "0015:" 15kW |
| C | Input voltage degree: <br> 4T: AC 3PH 380V(-15\% $(-480 \mathrm{~V}(+10 \%($ <br> 6T: AC 3PH 575V(-15\% $(-690 \mathrm{~V}(+10 \%($ |

### 3.6 Rated specifications

| VFD <br> Model | SIZE | Constant torque Heavy Duty |  |  | Variable torque Normal Duty |  |  | I Nom. | I Max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Output power (kW) | Horse Power (HP) | Output current (A) | Output power (kW) | Horse Power (HP) | Output current (A) |  |  |
| SG200-0007-4T | K10 | 5.5 | 7.5 | 14 | 7.5 | 10 | 18.5 | 18.5 | 22 |
| SG200-0011-4T |  | 7.5 | 10 | 18.5 | 11 | 15 | 25 | 25 | 30 |
| SG200-0015-4T | K15 | 11 | 15 | 25 | 15 | 20 | 32 | 32 | 38 |


| VFD Model | SIZE | Constant torque Heavy Duty |  |  | Variable torque Normal Duty |  |  | I Nom. | I Max. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Output power (kW) | Horse Power (HP) | Output current (A) | Output power (kW) | Horse Power (HP) | Output current (A) |  |  |
| SG200-0018-4T | K15 | 15 | 20 | 32 | 18.5 | 25 | 38 | 38 | 46 |
| SG200-0022-4T |  | 18.5 | 25 | 38 | 22 | 30 | 45 | 45 | 54 |
| SG200-0030-4T | K20 | 22 | 30 | 45 | 30 | 40 | 60 | 60 | 72 |
| SG200-0037-4T |  | 30 | 40 | 60 | 37 | 50 | 75 | 75 | 90 |
| SG200-0045-4T | K25 | 37 | 50 | 75 | 45 | 60 | 92 | 92 | 110 |
| SG200-0055-4T |  | 45 | 60 | 92 | 55 | 75 | 115 | 115 | 138 |
| SG200-0075-4T |  | 55 | 75 | 115 | 75 | 100 | 150 | 150 | 180 |
| SG200-0090-4T | K30 | 75 | 100 | 150 | 90 | 125 | 180 | 180 | 216 |
| SG200-0110-4T |  | 90 | 125 | 180 | 110 | 150 | 215 | 215 | 258 |
| SG200-0132-4T |  | 110 | 150 | 215 | 132 | 180 | 260 | 260 | 312 |
| SG200-0160-4T | K35 | 132 | 180 | 260 | 160 | 220 | 305 | 305 | 366 |
| SG200-0185-4T |  | 160 | 220 | 305 | 185 | 260 | 340 | 340 | 408 |
| SG200-0200-4T | K40 | 185 | 260 | 340 | 200 | 280 | 380 | 380 | 456 |
| SG200-0220-4T |  | 200 | 280 | 380 | 220 | 300 | 425 | 425 | 510 |
| SG200-0250-4T | K45 | 220 | 300 | 425 | 250 | 340 | 480 | 480 | 576 |
| SG200-0280-4T |  | 250 | 340 | 480 | 280 | 385 | 530 | 530 | 636 |
| SG200-0315-4T |  | 280 | 385 | 530 | 315 | 430 | 600 | 600 | 720 |
| SG200-0355-4T |  | 315 | 430 | 600 | 355 | 485 | 650 | 650 | 780 |
| SG200-0400-4T | K55 | 355 | 485 | 650 | 400 | 545 | 720 | 720 | 864 |
| SG200-0450-4T |  | 400 | 545 | 720 | 450 | 615 | 775 | 775 | 930 |
| SG200-0500-4T |  | 450 | 615 | 820 | 500 | 680 | 860 | 860 | 1032 |
| SG200-0560-4T |  | 500 | 680 | 860 | 560 | 765 | 950 | 950 | 1140 |
| SG200-0630-4T | * | 560 | 765 | 950 | 630 | 860 | 1100 | 1100 | 1320 |
| SG200-0800-4T | * | 630 | 860 | 1100 | 800 | 1090 | 1400 | 1400 | 1680 |
| SG200-1000-4T | * | 800 | 1090 | 1400 | 1000 | 1360 | 1700 | 1700 | 2040 |

* Contact SGT at the time of ordering


## Note:

NORMAL DUTY: Overload 120\% rated current for 1 minute- for applications which use self-ventilated induction motors and require a low overload capability (e.g. fans, pumps)
HEAVY DUTY: Overload 150\% rated current for 1 minute- Overload 180\% rated current for 3 Sec Overload $200 \%$ rated current for 0.5 Sec , for constant torque applications which require a high overload capability (e.g. cranes, hoists)

## 4 Installation guidelines

### 4.1 What this chapter contains

The chapter describes the mechanical installation and electric installation.

| - Only qualified electricians are allowed to carry out what described in this |
| :---: | :---: |
| chapter. Please operate as the instructions in 1 Safety precautions. Ignoring |
| these may cause physical injury or DEATH or damage to the devices. |
| - Ensure the power supply of the VFD is disconnected during the operation. Wait |
| for at least the time designated until the POWER indicator is off after the |
| disconnection if the power supply is applied. It is recommended to use the |
| multimeter to monitor that the DC bus voltage of the drive is under 36V. |
| - The installation and design of the VFD should be complied with the requirement |
| of the local laws and regulations in the installation site. If the installation |
| infringes the requirement, our company will exempt from any responsibility. |
| Additionally, if users do not comply with the suggestion, some damage beyond |
| the assured maintenance range may occur. |

### 4.2 Mechanical installation

### 4.2.1 Installation environment

The installation environment is important for a full performance and long-term stable functions of the VFD. Check the installation environment as followings:

| Environment | Conditions |
| :---: | :--- |
| Installation site | Indoor |
|  | $-10-+50^{\circ} \mathrm{C}$ <br> If the ambient temperature of the VFD is above $40^{\circ} \mathrm{C}$, de-rate $1 \%$ <br> for every additional $1^{\circ} \mathrm{C}$. <br> It is not recommended to use the VFD if the ambient temperature is <br> above $50^{\circ} \mathrm{C}$. <br> In order to improve the reliability of the device, do not use the VFD if <br> the ambient temperature changes frequently. <br> Please provide cooling fan or air conditioner to control the internal <br> ambient temperature below the required one if the VFD is used in a <br> close space such as in the control cabinet. <br> When the temperature is too low, if the VFD needs to restart to run <br> after a long stop, it is necessary to provide an external heating device <br> to increase the internal temperature, otherwise damage to the devices <br> may occur. |
| temperature |  |


| Storage temperature | -30 to $+60^{\circ} \mathrm{C}$ |
| :---: | :--- |
| Running environment | The installation site of the VFD should meet the following <br> requirements. <br> Away from the electromagnetic radiation source; <br> Away from contaminative air, such as corrosive gas, oil mist and <br> flammable gas; <br> Ensure foreign objects, such as metal power, dust, oil, water cannot <br> enter into the VFD (do not install the VFD on the flammable materials <br> such as wood); <br> Away from direct sunlight, oil mist, steam and vibration environment . |
| Altitude | Below 1000 meters <br> When the installation site altitude exceeds 1000m, de-rate 1\% for <br> every increase of 100m; when the installation site altitude exceeds <br> 3000 m, consult the local S.G.T. dealer or office. |
| Vibration | $\leq 5.8 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{~g})$ |

## Note:

- SG200 series VFDs should be installed in a clean and ventilated environment according to enclosure classification.
- Cooling air must be clean, free from corrosive materials and electrically conductive dust.


### 4.2.2 Installation direction

The VFD may be installed on the wall or in a cabinet.
The VFD must be installed in an upright position. Check the installation site according to the requirements below. Refer to Appendix B Dimension drawings in the appendix for frame details.


Figure 4-1 Installation direction of the VFD

### 4.2.3 Installation manner

The VFD can be installed in two different ways, depending on the frame size:
a) Wall mounting (for the 0355 and lower models)
b) Flange mounting (for the 0220 and lower models). Some need optional flange installation board.
c) Floor mounting (for the 0250 - 0560 models). Some need optional base.


Figure 4-2 Installation manner
(1) Mark the hole location. The location of the holes is shown in the dimension drawings in the appendix.
(2) Fix the screws or bolts to the marked locations.
(3) Position the drive onto the wall.
(4) Tighten the screws in the wall securely.

## Note:

- The flange installation bracket is needed in the flange installation of the 0007 -0037 models while the flange installation of the 0045 - 0220 models does not need the installation bracket.
- The 0250 - 0355 models need optional base in the floor installation.


### 4.2.4 Multiple installations

## Parallel installation



Figure 4-3 Parallel installation

## Note:

- Before installing the different size VFDs, please align their top position for the convenience of later maintenance.
- The minimum space of $B, D$ and $C$ is 100 mm .


### 4.2.5 Vertical installation



Figure 4-4 Vertical installation
Note: Windscreen should be added in vertical installation for avoiding mutual impact and insufficient cooling.

### 4.2.6 Tilt installation



Figure 4-5 Tilt installation

### 4.3 Standard wiring

4.3.1 Wiring diagram of main circuit


Figure 4-6 Main circuit wiring diagram for the 0018 and lower models


Figure 4-7 Main circuit wiring diagram for the 0022-0037 models


Figure 4-8 Main circuit wiring diagram for the 0045 and higher models

## Note:

- The fuses, DC reactors, braking units, braking resistors, input reactors, input filters, output reactors and output filters are optional parts. Please refer to Peripheral Optional Parts for detailed information.
- P1 and (+) are short circuited in factory, if need to connect with the DC rector, please remove the contact tag between P1 and ( $\mathbf{+}$ ).
- Before connecting the braking resistor cable, remove the yellow labels of PB, (+), and (-) from the terminal blocks. Otherwise, poor connection may occur.


### 4.3.2 Terminals figure of main circuit


(-) (+) PB R S T U V W PE

Figure 4-9 Main circuit terminals for the 0007 model

(-) (+) PB R S T U V W PE

Figure 4-10 Main circuit terminals for the 0011-0022 models


Figure 4- 11 Main circuit terminals for the 0030 - 0037 models


Figure 4-12 Main circuit terminals for the 0045 -0075 models


Figure 4-13 Main circuit terminals for the 0090-0132 models


Figure 4- 14 Main circuit terminals for the 0160 - 0185 models


Figure 4-15 Main circuit terminals for the $0200-0250$ models


Figure 4-16 Main circuit terminals for the 0250 - 0355 models


Figure 4-17 Main circuit terminals for the 0400-1000 models

| Terminal | Terminal name |  | Function |
| :---: | :---: | :---: | :---: |
|  | For the 0037 and lower models | For the 0045 and higher models |  |
| R, S, T | Power input of the main circuit |  | 3-phase AC input terminals which are generally connected with the power supply. |
| U, V, W | The VFD output |  | 3-phase AC output terminals which are generally connected with the motor. |
| P1 | This terminal is inexistent | DC reactor terminal 1 | P1 and (+) are connected with the terminals of DC reactor. <br> $(+)$ and $(-)$ are connected with the terminals of braking unit. <br> PB and (+) are connected with the terminals of braking resistor. |
| (+) | Braking resistor 1 | DC reactor terminal 2, braking unit terminal 1 |  |
| (-) | 1 | Braking unit terminal 2 |  |
| PB | Braking resistor terminal 2 | This terminal is inexistent. |  |
| PE | 380 V : the grounding resistor is less than 10 ohms |  | Protective grounding terminals, every machine is provided 2 PE terminals as the standard configuration. These terminals should be grounded with proper techniques. |
| A1 and A2 | Control power terminal |  | Optional for the 0022 and higher models (connect to external 220 V control power). <br> Power can be supplied via auxiliary power, making it more convenient for commissioning. |

## Note:

- Do not use an asymmetrically constructed motor cable. If there is a symmetrically constructed grounding conductor in the motor cable in addition to the conductive shield, connect the grounding conductor to the grounding terminal at the VFD and motor ends.
- Braking resistor, braking unit and DC reactor are optional parts.
- Route the motor cable, input power cable and control cables separately.
- When sharing the DC bus, the VFDs must be the same in power and must be simultaneously powered on or off.
- In shared DC bus running mode, current balance on the VFD input side must be considered during wiring, and equalizing reactors are recommended to be configured.
- If the terminal is not appeared, the machine does not provide the terminal as the external terminal.


### 4.3.3 Wiring of terminals in main circuit

1. Connect the ground line of input power cable to the ground terminal (PE) of VFD directly, and connect 3 PH input cable to $\mathrm{R}, \mathrm{S}$ and T and fasten up.
2. Connect the ground line of motor cable to the ground terminal of the VFD, and connect the 3PH motor cable to $\mathrm{U}, \mathrm{V}, \mathrm{W}$ and fasten up.
3. Connect the brake resistor which carries cables to the designated position.
4. Fasten up all the cables on the outside of the VFD if allowed.


The screw is not fastened

The screw is
fastened

Figure 4-18 Correct installation of the screw

### 4.3.2 Terminals figure of main circuit and control diagram


4.3.3 Control Terminals layout

| (3) |  | (3) | (12) | (5) |  | (5) | (12) | (52) | (19) | (5) |  |  |  | (5) |  | (1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (9) | (5) | (5) | (5) | (5) | (5) | (5) | (15) | (5) | (5) |  | (5) | (5) | (5) | (5) | (5) | (5) |
| 10 V A |  | Al3 GND AO2 DI1 |  |  |  | DI2 ${ }^{\text {DI }}$ | D3 | DI4 | D15 D16 |  | D17 ${ }^{\text {HDI }}$ |  |  | TA2 ${ }^{\text {TB2 }}$ |  | TC2 |
| 485+ | 485- | - GND | A01 | 1 24 V | OP | COM | D18 | COM | M CME |  | Y1 | HDO | CME | TA1 | TB1 | TC1 |


| Terminal <br> name | $\quad$ Description |
| :---: | :--- |$|$| HDO | 1. Switch output: $50 \mathrm{~mA} / 30 \mathrm{~V}$ <br> 2. Output frequency range: $0-50 \mathrm{kHz}$ |
| :---: | :--- | :--- |
| COM | +24V common terminal |
| CME | Common terminal of HDO and Y1, short-connected with COM in factory |

## 5 Keypad operation procedure

### 5.1 What this chapter contains

This chapter contains following operation:

- Buttons, indicating lights and the screen as well as the methods to inspect, modify and set function codes by keypad
- Start


### 5.2 Keypad

The keypad is used to control SG200 series VFDs, read the state data and adjust parameters


Figure 5-1 Keypad

| No. | Name | Description <br> 1 |  |
| :---: | :---: | :--- | :--- |
| State LED | RUN/TUNE | LED off - the VFD is stopped <br> LED blinking - the VFD is in parameter <br> auto-tune <br> LED on - the VFD is running |  |


| No. | Name | Description |  |  |
| :---: | :---: | :--- | :--- | :--- | :--- |


| No. | Name | Description |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | DOWN key | Decrease data or function code <br> progressively |

### 5.3 Keypad displaying

The keypad displaying state of SG200 series VFDs is divided into stopping state parameter, running state parameter, function code parameter editing state and fault alarm state and so on.


Figure 5-2 Displayed state

### 5.4 Keypad operation

Operate the VFD via operation panel. See the detailed structure description of function codes in the brief diagram of function codes.

### 5.4.1 How to modify the function codes of the VFD

The VFD has three levels menu, which are:

1. Group number of function code (first-level menu)
2. Tab of function code (second-level menu)

## 3. Set value of function code (third-level menu)

Remarks: Press both the $\square$ and the $\square$ can return to the second-level menu from the third-level menu. The difference is: pressing $\quad$ will save the set parameters into the control panel, and then return to the second-level menu with shifting to the next function code automatically; while pressing $\quad$ will directly return to the second-level menu without saving the parameters, and keep staying at the current function code.

Under the third-level menu, if the parameter has no flickering bit, it means the function code cannot be modified. The possible reasons could be:

1) This function code is not modifiable parameter, such as actual detected parameter, operation records and so on;
2) This function code is not modifiable in running state, but modifiable in stop state.

Example: Set function code F00.01 from 0 to 1 .


Figure 5-3 Sketch map of modifying parameters

### 5.4.2 How to set the password of the VFD

SG200 series VFDs provides the user password protection function. When you set F07.00 to a nonzero value, the value is the user password. After you exit the function code editing interface, the password protection function is enabled within 1 minute. If password protection is enabled, "0.0.0.0.0" is displayed when you press the $\square$ key again to enter the function code editing interface. You need to enter the correct user password to enter the interface.

To disable the password protection function, you need only to set F07.00 to 0 .


Figure 5-4 Sketch map of password setting

### 5.4.3 How to watch the VFD state through function codes

SG200 series VFDs provide group F17 as the state inspection group. Users can enter into F17 directly to watch the state.


The units place is blinking
Note: When setting the value, you can press $\gg$ and $\nabla+\mathbf{~ m o d i f y ~ t h e ~ v a l u e . ~}$
Figure 5-5 Sketch map of state watching

## 6 Function parameters

### 6.1 What this chapter contains

This chapter lists and describes the function parameters.

### 6.2 SG200 general series function parameters

The function parameters of SG200 series VFDs have been divided into 30 groups (F00-F29) according to the function, of which F18 - F28 are reserved. Each function group contains certain function codes applying 3 -level menus. For example, "F08.08" means the eighth function code in the F8 group function, F29. group is factory reserved, and users are forbidden to access these parameters.

For the convenience of function codes setting, the function group number corresponds to the first level menu, the function code corresponds to the second level menu and the function code corresponds to the third level menu.

1. Below is the instruction of the function lists:

The first column "Function code": codes of function parameter group and parameters;
The second column "Name": full name of function parameters;
The third column "Description": detailed illustration of the function parameters;
The fourth column "Default value": the original factory set value of the function parameter;
The fifth column "Modify": the modifying character of function codes (the parameters can be modified or not and the modifying conditions), below is the instruction:
" O ": means the set value of the parameter can be modified on stop and running state;
"○": means the set value of the parameter cannot be modified on the running state;
"-": means the value of the parameter is the real detection value which cannot be modified.
(The VFD has limited the automatic inspection of the modifying character of the parameters to help users avoid inadvertent modification).
2. "Parameter radix" is decimal (DEC), if the parameter is expressed by hex, then the parameter is separated from each other when editing. The setting range of certain bits are $0-F$ (hex).
3."The default value" means the function parameter will restore to the default value during default parameters restoring. But the detected parameter or recorded value won't be restored.
4. For a better parameter protection, the VFD provides password protection to the parameters. After setting the password (set F07.00 to any non-zero number), the system will come into the state of password verification firstly after the user press PRG/ESC to come into the function code editing state. And then "0.0.0.0.0." will be displayed. Unless the user input right password, they cannot enter
into the system. For the factory setting parameter zone, it needs correct factory password (remind that the users cannot modify the factory parameters by themselves, otherwise, if the parameter setting is incorrect, damage to the VFD may occur). If the password protection is unlocked, the user can modify the password freely and the VFD will work as the last setting one. When F07.00 is set to 0 , the password can be canceled. If F07.00 is not 0 during powering on, then the parameter is protected by the password. When modify the parameters by serial communication, the function of the password follows the above rules, too. Note: All information which related Al1 is reserved.

F00 Group Basic functions

| Function <br> code | Name | Description | Default <br> value | Modify |
| :---: | :---: | :--- | :---: | :---: |
| F00.00 | Speed control <br> mode | 1: Sensorless vector control mode 1 (applying to <br> motor) <br> No need to install encoders. It is suitable in cases <br> with high speed control accuracy for accurate <br> speed and torque control at all power ratings. 2: <br> SVPWM ( V/F ) control <br> No need to install encoders. It can improve the <br> control accuracy with the advantages of stable <br> operation, valid low-frequency torque boost and <br> current vibration suppression and the functions of <br> slip compensation and voltage adjustment. Note: <br> motor-Asynchronous motor | 2 | 2 |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 2: Communication running command channel ("LOCAL/REMOT" on); <br> The running command is controlled by the upper monitor via communication. |  |  |
| F00.02 | Communication selection | 0 : MODBUS communication 1-3: Reserved | 0 | $\bigcirc$ |
| F00.03 | Max. <br> output frequency | This parameter is used to set the Maximum output frequency of the VFD. Users should pay attention to this parameter because it is the foundation of the frequency setting and the speed of acceleration and deceleration. Setting range:F00.04-400.00Hz | 50.00 Hz | $\bigcirc$ |
| F00.04 | Upper limit of the running frequency | The upper limit of the running frequency is the upper limit of the output frequency of the VFD which is lower than or equal to the maximum frequency. <br> Setting range:F00.05-F00.03(max. output frequency) | 50.00 Hz | $\bigcirc$ |
| F00.05 | Lower limit of the running frequency | The lower limit of the running frequency is that of the output frequency of the VFD. <br> The VFD runs at the lower limit frequency if the set frequency is lower than the lower limit one. <br> Note: Max. output frequency $\geq$ Upper limit frequency $\geq$ Lower limit frequency <br> Setting range: $0.00 \mathrm{~Hz}-\mathrm{F00.04}$ (Upper limit of the running frequency) | 0.00 Hz | $\bigcirc$ |
| F00.06 | A frequency command | Note: Frequency A and frequency B cannot use the same frequency setting mode. The frequency | 0 | $\bigcirc$ |
| F00.07 | B frequency command | source can be set byF00.09. <br> 0 : Keypad data setting <br> Modify the value of F00.10 (set the frequency by keypad) to modify the frequency by the keypad. <br> 1: Analog Al1 setting (implemented through the analog potentiometer on the keypad for the 0018 and lower models; not available for the 0022 and higher models.) <br> 2: Analog AI2 setting <br> 3: Analog Al3 setting | 2 | O |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Set the frequency by analog input terminals. SG200 series VFDs provide 3 channels analog input terminals as the standard configuration, of which AI1/AI2 are the voltage/current option (0 (2)-10V/0 (4)-20mA) which can be shifted by jumpers; while AI3 is voltage input ( $-10 \mathrm{~V}-+10 \mathrm{~V}$ ). <br> Note: When analog AI1/Al2 selects 0 (4)-20mA input, the corresponding voltage of 20 mA is 10 V . $100.0 \%$ of the analog input setting corresponds to the maximum frequency (function codeF00.03) in forward direction and $-100.0 \%$ corresponds to the maximum frequency in reverse direction (function codeF00.03) <br> 4: High-speed pulse HDI setting <br> The frequency is set by high-speed pulse terminals. SG200 series VFDs provide 1 channel high speed pulse input as the standard configuration. The pulse frequency range is $0.00-50.00 \mathrm{kHz}$. <br> $100.0 \%$ of the high speed pulse input setting corresponds to the maximum frequency in forward direction (F00.03) and -100.0\% corresponds to the maximum frequency in reverse direction (F00.03). <br> Note: The pulse setting can only be input by multi-function terminals HDI. SetF05.00(HDI input selection) to high speed pulse input. <br> 5: Simple PLC program setting <br> The VFD runs at simple PLC program mode when F00.06=5 orF00.07=5. Set F10 (simple PLC and multi-step speed control) to select the running frequency, running direction, ACC/DEC time and the keeping time of corresponding step. See the function description of F10 for detailed information. <br> 6: Multi-step speed running setting <br> The VFD runs at multi-step speed mode when |  |  |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
|  |  | F00.06=6 or $\mathrm{F} 00.07=6$. Set F 05 to select the current running step, and set F10 to select the current running frequency. <br> The multi-step speed has the priority when F00.06 Or F00.07does not equal to 6 , but the setting step can only be the $1-15$ steps. The setting step is $0-15$ if F00.06or F00.07equals 6. <br> 7: PID control setting <br> The running mode of the VFD is process PID control when $\mathrm{F} 00.06=7$ or $\mathrm{F} 00.07=7$. It is necessary to set F09. The running frequency of the VFD is the value after PID effect. See F09 for the detailed information of the preset source, preset value, and feedback source of PID. <br> 8: MODBUS communication setting <br> The frequency is set by MODBUS communication. <br> See F14 for detailed information. <br> 9-11: Reserved |  |  |
| F00.08 | $B$ frequency command reference | 0 : Maximum output frequency, $100 \%$ of $B$ frequency setting corresponds to the maximum output frequency <br> 1: A frequency command, $100 \%$ of $B$ frequency setting corresponds to the maximum output frequency. Select this setting if it needs to adjust on the base of $A$ frequency command. | 0 | $\bigcirc$ |
| F00.09 | Combination of the setting source | 0 : A , the current frequency setting is A frequency command <br> 1: $B$, the current frequency setting is $B$ frequency command <br> 2: $A+B$, the current frequency setting is $A$ frequency command $+B$ frequency command <br> 3 : $A-B$, the current frequency setting is $A$ frequency command - B frequency command <br> 4: Max (A, B): the bigger one between A frequency command and $B$ frequency is the set frequency. <br> 5: Min (A, B): The lower one between A frequency command and $B$ frequency is the set frequency. <br> Note: The combination manner can be shifted by F05(terminal function) | 0 | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F00.10 | Keypad set frequency | When $A$ and $B$ frequency commands are selected as "keypad setting", this parameter will be the initial value of VFD reference frequency Setting range: $0.00 \mathrm{~Hz}-\mathrm{FOO} .03$ (the max. frequency) | 50.00 Hz | O |
| F00.11 | ACC time 1 | ACC time means the time needed if the VFD speeds up from 0 Hz to the max. one (F00.03). <br> DEC time means the time needed if the VFD speeds down from the max. output frequency to OHz (F00.03). | Model depended | O |
| F00.12 | DEC time 1 | SG200 series VFDs define four groups of ACC/DEC time which can be selected by F05. <br> The factory default ACC/DEC time of the VFD is the first group. <br> Setting range of F00.11and F00.12: 0.0-3600.0s | Model depended | O |
| F00.13 | Running direction | 0 : Runs at the default direction, the VFD runs in the forward direction. FWD/REV indicator is off. <br> 1: Runs at the opposite direction, the VFD runs in the reverse direction. FWD/REV indicator is on. Modify the function code to shift the rotation direction of the motor. This effect equals to the shifting the rotation direction by adjusting either two of the motor lines ( $\mathrm{U}, \mathrm{V}$ and W ). In keypad control, the motor rotation direction can be changed by Q parameter F07.02. <br> Note: When the function parameter comes back to the default value, the motor's running direction will come back to the factory default state, too. In some cases it should be used with caution after commissioning if the change of rotation direction is disabled. <br> 2: Forbid to run in reverse direction: It can be used in some special cases if the reverse running is disabled. | 0 | O |



| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
|  |  | It is recommended to use rotation auto-tuning when high control accuracy is needed. <br> 2: Static auto-tuning 1 <br> It is suitable in the cases when the motor cannot de-couple from the load. <br> 3: Static auto-tuning 2 <br> It is suitable in the cases when the motor cannot de-couple form the load. But only for parts of parameters. |  |  |
| F00.16 | AVR function selection | 0: Invalid <br> 1: Valid during the whole procedure <br> The auto-adjusting function of the VFD can cancel the impact on the output voltage of the VFD because of the bus voltage fluctuation. | 1 | $\bigcirc$ |
| F00.17 | VFD type | 0: HEAVY DUTY, for the constant torque load of rated parameters <br> 1: NORMAL DUTY; for the variable torque load of rated parameters (fans and water pumps | 0 | $\bigcirc$ |
| F00.18 | Function restore parameter | 0: No operation <br> 1: Restore the default value <br> 2: Clear fault records <br> 3: Lock the keypad <br> 4: Reserved <br> 5: Restore default values (standard version) <br> 6: Restore default values (motor parameters included) <br> Note: <br> The function code is restored to 0 after the operation corresponding to the selected option is performed. <br> Restoring to the default value will cancel the user password. Exercise caution before using this function. <br> When $\mathrm{F} 00.18=3$, all the other function codes except F00.18 are read only. | 0 | © |


| Function <br> code | Name | Description | Default <br> value | Modify |
| :---: | :--- | :--- | :--- | :--- |
|  |  | For non-standard software version, the option 1 <br> restores parameters to non-standard version while <br> the option 5 restores parameters to the <br> corresponding standard version. For standard <br> software version, the option 1 and option 5 are the <br> same. |  |  |

F01 Group Start and stop control

| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F01.00 | Start mode | 0 : Start directly: start from the starting frequency F01.01 <br> 1: Start after DC braking: start the motor from the starting frequency after DC braking (set the parameter F01.03 and F01.04). It is suitable in the cases where reverse rotation may occur to the low inertia load during starting. <br> 2: Start after speed tracking 1 <br> 3: Reserved <br> Start the rotating motor smoothly after tracking the rotation speed and direction automatically. It is suitable in the cases where reverse rotation may occur to the big inertia load during starting. | 0 | $\bigcirc$ |
| F01.01 | Starting frequency of direct start | Starting frequency of direct start means the original frequency during the VFD starting. See F01.02 for detailed information. <br> Setting range: $0.00-50.00 \mathrm{~Hz}$ | 0.50 Hz | $\bigcirc$ |
| F01.02 | Retention time of the starting frequency | Set a proper starting frequency to increase the torque of the VFD during starting. During the retention time of the starting frequency, the output frequency of the VFD is the starting frequency. And then, the VFD will run from the starting frequency to the set frequency. If the set frequency is lower than the starting frequency, the VFD will stop running and keep in the stand-by | 0.0s | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
|  |  | state. The starting frequency is not limited in the lower limit frequency. <br> Setting range: 0.0-50.0s |  |  |
| F01.03 | The braking current before starting | The VFD will carry out DC braking at the braking current set before starting and it will speed up after the $D C$ braking time. If the $D C$ braking time is set | 0.0\% | $\bigcirc$ |
| F01.04 | The braking time before starting | The stronger the braking current, the bigger the braking power. The DC braking current before starting means the percentage of the rated output current of the VFD. <br> Setting range of F01.03: 0.0-100.0\% <br> Setting range of F01.04: 0.00-50.00s | 0.00s | $\bigcirc$ |
| F01.05 | ACC/DEC <br> selection | The changing mode of the frequency during start and running. <br> 0: Linear type <br> The output frequency increases or decreases linearly. <br> 1: $S$ curve: <br> Output frequency increases/decreases gradually based on S curve. S curve is used in cases where smooth start/stop is required, such as elevator, conveyer belt, etc. | 0 | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F01.06 | ACC time of the starting step of S curve | Setting rage: 0.0-50.0s | 0.1 s | $\bigcirc$ |
| F01.07 | DEC time of the ending step of S curve | Note: Effective when F01.05= 1 | 0.1s | $\bigcirc$ |
| F01.08 | Stop mode | 0: Decelerate to stop: after the stop command becomes valid, the VFD decelerates to reduce the output frequency during the set time. When the frequency decreases to 0 Hz , the VFD stops. <br> 1: Coast to stop: after the stop command becomes valid, the VFD ceases the output immediately. And the load coasts to stop at the mechanical inertia. | 0 | $\bigcirc$ |
| F01.09 | Starting frequency of DC braking | Starting frequency of DC braking: start the DC braking when running frequency reaches starting frequency determined by F01.09. | 0.00 Hz | $\bigcirc$ |
| F01.10 | Waiting time before DC braking | Waiting time before DC braking: VFDs block the output before starting the DC braking. After this waiting time, the DC braking will be started so as to | 0.00s | $\bigcirc$ |
| F01.11 | DC braking current | prevent over-current fault caused by DC braking at high speed. | 0.0\% | $\bigcirc$ |
| F01.12 | DC braking time | DC braking current: The value of F01.11 is the percentage of rated current of VFD. The bigger the DC braking current is, the greater the braking torque is. <br> DC braking time: The retention time of DC brake. If the time is 0 , the DC brake is invalid. The VFD will stop at the set deceleration time. <br> Setting range of F01.09: $0.00 \mathrm{~Hz}-\mathrm{F} 00.03$ (the max. frequency) | 0.00s | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Setting range of F01.10: 0.00-50.00s <br> Setting range of F01.11: 0.0-100.0\% <br> (corresponding to the rated output current of the VFD) <br> Setting range of F01.12: 0.00-50.00s |  |  |
| F01.13 | Dead time of FWD/REV rotation | During the procedure of switching FWD/REV rotation, set the threshold by F01.14, which is as the table below: <br> Setting range: $0.0-3600.0 \mathrm{~s}$ | 0.0s | $\bigcirc$ |
| F01.14 | Shifting between FWD/REV rotation | Set the threshold point of the VFD: <br> 0 : Switch after 0 frequency <br> 1: Switch after the starting frequency <br> 2: Switch after the stopping speed | 0 | © |
| F01.15 | Stopping speed | $0.00-100.00 \mathrm{~Hz}$ | 0.50 Hz | © |
| F01.16 | Detection of stopping speed | 0 : Detect according to speed setting (no stopping delay) <br> 1: Detect according to speed feedback (only valid for vector control) | 1 | O |
| F01.17 | Detection time of the feedback speed | If F 01.16 is set to 1 , the feedback frequency is less than or equal to F01.15 and detect in the set time of F01.17, the VFD will stop; otherwise the VFD will stop after the set time of F01.17. <br> Setting range: 0.00-100.00s (only valid when F01.16=1) | 0.50s | © |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F01.18 | Operation <br> protection <br> during <br> powering on | When the running command channel is the terminal control, the system will detect the state of the running terminal during powering on. <br> 0 : The terminal running command is invalid when powering on. Even the running command is detected to be valid during powering on, the VFD won't run and the system keeps in the protection state until the running command is canceled and enabled again. <br> 1: The terminal running command is valid when powering on. If the running command is detected to be valid during powering on, the system will start the VFD automatically after the initialization. Note: This function should be selected with cautions, or serious result may follow. | 0 | $\bigcirc$ |
| F01.19 | Action selection when running frequency is lower than lower limit of frequency (valid when low limit of frequency is larger than 0) | This function code determines the running state of the VFD when the set frequency is lower than the lower-limit one. <br> Ones place: Action selection <br> 0 : Run at the frequency lower limit <br> 1: Stop <br> 2: Hibernation <br> Tens place: Stop mode <br> 0: Coast to stop <br> 1: Decelerate to stop <br> The VFD will sleeps or stops as set in Tens place when the set frequency is lower than the lower-limit one and the hibernation delay time (F08.22) is reached. If the set frequency is above the lower limit one again and it lasts for the time set by F01.20, the VFD will come back to the running state automatically. <br> 3: Sleep and standby 2 <br> Select sleep and standby 2: When the running frequency is no more than lower limit frequency (F00.05), it is required to judge F24.05 continuously before entering sleep state. Setting range: $0 \times 00-0 \times 13$ | 0 | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F01.20 | Wake-up-fromsleep delay | This function code determines the wake-up-from-sleep delay. When the running frequency of the VFD is lower than the lower limit one, the VFD will pause to stand by. When the set frequency is above the lower limit one again and it lasts for the time set by F01.20, the VFD will run automatically. <br> Note: The time is the total value when the set frequency is above the lower limit one. <br> Setting range: 0.0-3600.0s <br> (valid when F01.19=2) | 0.0s | $\bigcirc$ |
| F01.21 | Restart after power off | This function can enable the VFD start or not after the power off and then power on. <br> 0 : Disable <br> 1: Enable, if the starting need is met, the VFD will run automatically after waiting for the time defined by F01.22. | 0 | $\bigcirc$ |
| F01.22 | The waiting time of restart after power off | The function determines the waiting time before the automatic running of the VFD when powering off and then powering on. <br> Setting range: 0.0-3600.0s (valid when F01.21=1) | 1.0s | $\bigcirc$ |
| F01.23 | Start delay time | The function determines the brake release after the running command is reference, and the VFD is in a stand-by state and the delay time set by F01.23 to wait. <br> Setting range: 0.0-60.0s | 0.0s | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F01.24 | Delay time of the stop speed |  <br> Setting range: $0.0-100.0 \mathrm{~s}$ | 0.0s | $\bullet$ |
| F01.25 | 0 Hz output selection | 0 : Output without voltage <br> 1: Output with voltage <br> 2: Output at the DC braking current | 0 | $\bullet$ |

F02 Group Motor

| Function code | Name |  | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F02.01 | Rated power of Motor | 0.1-3000.0kW | To ensure control performance, setF02.01-F02.05according to the motor nameplate. <br> SG200 provides the parameter self-learning function. Accurate parameter self-learning is based on the correct settings of motor nameplate parameters. Perform motor configuration according to the mapping between VFDs and motors. If the motor power is far from the power of the motor that matches the VFD, the control performance of the VFD deteriorates sharply. <br> Note: Resetting the rated motor power (F02.01) will initialize F02.02-F02.10. | Model depended | $\bigcirc$ |
| F02.02 | Rated frequency of Motor | $0.01 \mathrm{~Hz}-\mathrm{F} 00.03$ (the max. frequency) |  | 50.00 Hz | O |
| F02.03 | Rated speed of Motor | 1-36000rpm |  | Model depended | O |
| F02.04 | Rated voltage of Motor | 0-1200V |  | Model depended | $\bigcirc$ |
| F02.05 | Rated current of Motor | 0.8-6000.0A |  | Model depended | O |
| F02.06 | Stator resistor of Motor | 0.001-65.535Q | After motor parameter self-learning is completed | Model depended | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F02.07 | Rotor resistor of Motor | $\begin{array}{\|l\|l} \text { 0.001-65.535 } & \begin{array}{l} \text { successfully, in rotary } \\ \text { self-learning and static } \end{array} \end{array}$ | Model depended | $\bigcirc$ |
| F02.08 | Leakage inductance of Motor | $0.1-6553.5 \mathrm{mH}$ self-learning 1, the settings of <br> F02.06-F02.10 can be updated <br> automatically. In static | Model depended | $\bigcirc$ |
| F02.09 | Mutual inductance of Motor | $0.1-6553.5 \mathrm{mH} \quad$self-learning mode 2, the settings <br> of F02.06-F02.08 can be <br> updated automatically. These | Model depended | $\bigcirc$ |
| F02.10 | Non-load current of Motor | parameters are the basic parameters for the VFD to control 0.1-6553.5A the motor and have direct impact on control performance. <br> Note: Exercise caution before modifying these parameters. | Model depended | $\bigcirc$ |
| F02.26 | Motor overload protection | 0 : No protection <br> 1: Common motor (with low speed compensation). Because the heat-releasing effect of the common motors will be weakened, the corresponding electric heat protection will be adjusted properly. The low speed compensation characteristic mentioned here means reducing the threshold of the overload protection of the motor whose running frequency is below 30 Hz . <br> 2: Variable frequency motor (without low speed compensation) Because the heat-releasing effect of the specific motors won't be impacted by the rotation speed, it is not necessary to adjust the protection value during low-speed running. | 2 | $\bigcirc$ |
| F02.27 | Motor over load protection coefficient | Times of motor overload $M=$ lout/( $\ln * K$ ) <br> In is the rated current of the motor, lout is the output current of the VFD and K is the motor protection coefficient. <br> So, the bigger the value of K is, the smaller the value of $M$ is. When $M=116 \%$, protection is performed after motor overload lasts for 1 hour; when $M=150 \%$, protection is performed after motor overload lasts for 12 minutes; when $\mathrm{M}=180 \%$, protection is performed after motor | 100.0\% | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
|  |  | overload lasts for 5 minutes; when $\mathrm{M}=200 \%$, protection is performed after motor overload lasts for 60 seconds; and when $M \geq 400 \%$, protection is performed immediately. <br> Setting range: $20.0 \%-120.0 \%$ |  |  |
| F02.28 | Correction coefficient of motor power | Correct the power displaying of motor. <br> Only impact the displaying value other than the control performance of the VFD. <br> Setting range: $0.00-3.00$ | 1.00 | $\bullet$ |

## F03 Group Vector control

| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F03.00 | Speed loop proportional gain1 | The parameters F03.00-F03.05 only apply to vector control mode. Below the switching frequency 1 (F03.02), the speed loop PI parameters are:F03.00 and F03.01. Above the switching frequency 2 (F03.05), the speed loop PI parameters are:F03.03 and F03.04. PI parameters are gained according to the linear change of two groups of parameters. It is shown as below: | 20.0 | $\bigcirc$ |
| F03.01 | Speed loop integral time1 |  | 0.200s | $\bigcirc$ |
| F03.02 | Low switching frequency |  | 5.00 Hz | $\bigcirc$ |
| F03.03 | Speed loop proportional gain 2 |  | 20.0 | $\bigcirc$ |
| F03.04 | Speed loop integral time 2 |  | 0.200s | $\bigcirc$ |
| F03.05 | High switching frequency |  | 10.00 Hz | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  <br> Setting the proportional coefficient and integral time of the adjustor can change the dynamic response performance of vector control speed loop. Increasing the proportional gain and decreasing the integral time can speed up the dynamic response of the speed loop. But too high proportional gain and too low integral time may cause system vibration and overshoot. Too low proportional gain may cause system vibration and speed static deviation. <br> PI has a close relationship with the inertia of the system. Adjust on the base of Pl according to different loads to meet various demands. <br> Setting range of F03.00: 0-200.0 <br> Setting range of F03.01: 0.000-10.000s <br> Setting range of F03.02: 0.00Hz-F03.05 <br> Setting range of F03.03: 0-200.0 <br> Setting range of F03.04: 0.000-10.000s <br> Setting range of F03.05:F03.02- F00.03 (the max. output frequency) |  |  |
| F03.06 | Speed loop output filter | $0-8$ (corresponds to $0-2^{8} / 10 \mathrm{~ms}$ ) | 0 | $\bigcirc$ |
| F03.07 | Compensation coefficient of electro motion slip | Slip compensation coefficient is used to adjust the slip frequency of the vector control and improve the speed control accuracy of the system. | 100\% | $\bigcirc$ |
| F03.08 | Compensation coefficient of braking slip | Adjusting the parameter properly can control the speed steady-state error. <br> Setting range: 50-200\% | 100\% | $\bigcirc$ |
| F03.09 | Current loop percentage coefficient P | Note: <br> 1 These two parameters adjust the PI adjustment parameter of the current loop which affects the | 1000 | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F03.10 | Current loop integral coefficient 1 | dynamic response speed and control accuracy directly. Generally, users do not need to change the default value. <br> 2 Only apply to SVC control mode 0 ( $F 00.00=0$ ). <br> Setting range: 0-65535 | 1000 | $\bigcirc$ |
| F03. 11 | Torque setting method | This parameter is used to enable the torque control mode, and set the torque. <br> 0 : Torque control is invalid <br> 1: Keypad setting torque (F03.12) <br> 2: Analog Al1 setting torque (implemented through the analog potentiometer on the keypad for the 0018 and lower models; not available for the 0022 and higher models.) <br> 3: Analog Al2 setting torque <br> 4: Analog Al3 setting torque <br> 5: Pulse frequency HDI setting torque <br> 6: Multi-step torque setting <br> 7: MODBUS communication setting torque <br> 8-10: Reserved <br> Note: For setting modes 2-5, 100\% corresponds to three times of the rated current of the motor. | 0 | $\bigcirc$ |
| F03.12 | Keypad setting torque | Setting range: -300.0\%-300.0\% (rated current of the motor) | 50.0\% | $\bigcirc$ |
| F03.13 | Torque reference filter time | 0.000-10.000s | 0.010s | $\bigcirc$ |
| F03.14 | Upper frequency of forward rotation in vector control | 0: Keypad (F03.16 sets F03.14,F03.17sets F03.15) <br> 1: Al1 (implemented through the analog potentiometer on the keypad for the 0018 and lower models; not available for the | 0 | $\bigcirc$ |
| F03.15 | Upper frequency of reverse rotation in vector control | and higher models.) <br> 2: Al2 <br> 3: Al3 <br> 4: Pulse frequency HDI setting upper-limit frequency <br> 5: Multi-step setting upper-limit frequency <br> 6: MODBUS communication setting upper-limit frequency 7-9: Reserved <br> Note: For setting method 1-6, 100\% corresponds to the maximum frequency | 0 | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F03.16 | Keypad setting for upper frequency of forward rotation | This function is used to set the upper limit of the frequency.F03.16 sets the value of F03.14; <br> F03.17sets the value of F03.15. <br> Setting range: $0.00 \mathrm{~Hz}-\mathrm{F} 00.03$ (the max. output frequency) | 50.00 Hz | $\bigcirc$ |
| F03.17 | Keypad setting for upper frequency of reverse rotation |  | 50.00 Hz | $\bigcirc$ |
| F03.18 | Upper electro motion torque source | This function code is used to select the electro motion and braking torque upper-limit setting source selection. <br> 0 : Keypad setting upper-limit frequency (F03.20 <br> sets F03.18,F03.21 sets F03.19) <br> 1: Al1 (implemented through the analog potentiometer on the keypad for the 0018 and lower models; not available for the and higher models.) <br> 2: Al2 <br> 3: Al3 <br> 4: HDI <br> 5: MODBUS communication <br> 6-8: Reserved <br> Note: For setting mode 1-4, 100\% corresponds to three times of the motor current. | 0 | $\bigcirc$ |
| F03.19 | Upper braking torque source |  | 0 | $\bigcirc$ |
| F03.20 | Keypad setting <br> Of electro motion torque | The function code is used to set the limit of the torque. <br> Setting range: 0.0-300.0\% (rated motor current) | 180.0\% | $\bigcirc$ |
| F03.21 | Keypad setting of braking torque |  | 180.0\% | O |
| F03.22 | Weakening coefficient in constant power zone | The usage of motor in weakening control. | 0.3 | $\bigcirc$ |
| F03.23 | Lowest weakening point in constant power |  | 20\% | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
|  | zone | Function codes F03.22 and F03.23are effective at constant power. The motor will enter into the weakening state when the motor runs at rated speed. Change the weakening curve by modifying the weakening control coefficient. The bigger the weakening control coefficient is, the steeper the weak curve is. <br> Setting range of F03.22: 0.1-2.0 <br> Setting range of F03.23: 10\%-100\% |  |  |
| F03.24 | Max. voltage limit | F03.24 sets the max. voltage of the VFD, which is dependent on the site situation. <br> The setting range: $0.0-120.0 \%$ | 100.0\% | $\bigcirc$ |
| F03.25 | Pre-exciting time | Reactivate the motor when the VFD starts up. Build up a magnetic field inside the VFD to improve the torque performance during the starting process. <br> The setting time: $0.000-10.000 \mathrm{~s}$ | 0.300s | O |
| F03.26 | Weak magnetic proportional gain | $0-8000$ <br> Note:F03.24-F03.26 are invalid for vector mode. | 1000 | O |
| F03.27 | Vector control speed | 0 : Display the actual value <br> 1: Display the setting value | 0 | $\bigcirc$ |
| F03.28 | Compensation coefficient of static friction | $0.0-100.0 \%$ <br> Adjust F03.28 to compensate the coefficient of static friction. Only valid when setting in 1 Hz . | 0.0\% | O |
| F03.29 | Compensation coefficient of dynamic friction | $0.0-100.0 \%$ <br> Adjust F03.29 to compensate the coefficient of static friction. Only valid when setting in 1 Hz . | 0.0\% | O |

F04 Group SVPWM control

| Function <br> code | Name | Description | Default <br> value | Modify |
| :---: | :---: | :--- | :---: | :---: |
| F04.00 | Motor V/F <br> curve setting | These function codes define the V/F curve of <br> SG200 motor 1, and meet the need of different <br> loads. <br> 0: Straight line V/F curve; applying to the constant <br> torque load | 0 | 0 |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 1: Multi-dots V/F curve <br> 2: Torque down V/F curve (power of 1.3) <br> 3: Torque down V/F curve (power of 1.7) <br> 4: Torque down V/F curve (power of 2.0) <br> Curves 2-4 apply to the torque loads such as fans and water pumps. Users can adjust according to the features of the loads to achieve a best energy -saving effect. <br> 5: Customized V/F (V/F separation); in this mode, V can be separated from $f$ and $f$ can be adjusted through the frequency reference channel set by F00.06 or the voltage reference channel set by F04.27 to change the feature of the curve. <br> Note: $\mathrm{V}_{\mathrm{b}}$ in the below picture is the motor rated voltage and $f_{b}$ is the motor rated frequency. |  |  |
| F04.01 | Motor torque boost | Torque boost is used for the compensation of low frequency torque.F04.01 is relative to the max. output voltage $\mathrm{V}_{\mathrm{b}}$. <br> F04.02 defines the percentage of closing frequency of manual torque to $\mathrm{fb}_{\mathrm{b}}$. <br> Torque boost should be selected according to the load. The bigger the load is, the bigger the torque is. Too big torque boost is inappropriate because the motor will run with over magnetic, and the current of the VFD will increase to add the temperature of the VFD and decrease the efficiency. | 0.0\% | O |
| F04.02 | Motor torque boost close | automatic torque boost. <br> Torque boost threshold: below this frequency point, the torque boost is effective, but over this frequency point, the torque boost is invalid. | 20.0\% | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  <br> Setting range of F04.01: 0.0\%: (automatic) <br> 0. 1\%-10.0\% <br> Setting range of F04.02: 0.0\%-50.0\% |  |  |
| F04.03 | V/F frequency 1 of motor |  | 0.00 Hz | $\bigcirc$ |
| F04.04 | V/F voltage 1 of motor | $--$ | 00.0\% | $\bigcirc$ |
| F04.05 | V/F frequency 2 of motor | F04.00=1, the user can set V/F curve | 00.00 Hz | $\bigcirc$ |
| F04.06 | V/F voltage 2 of motor | through F04.03-F04.08. | 00.0\% | $\bigcirc$ |
| F04.07 | V/F frequency 3 of motor | V/F is generally set according to the load of the motor. | 00.00 Hz | $\bigcirc$ |
| F04.08 | V/F voltage 3 of motor | frequency voltage will heat the motor excessively or damage. The overcurrent speed or overcurrent protection may occur to the VFD. <br> Setting range of F04.03: 0.00Hz F04.05 <br> Setting range of F04.04: 0.0\%-110.0\% <br> Setting range of F04.05:F04.03-F04.07 <br> Setting range of F04.06: 0.0\%-110.0\% <br> (the rated voltage of motor ) <br> Setting range of F04.07:F04.05-F02.02 <br> (the rated frequency of motor ) <br> Setting range of F04.08: 0.0\%-110.0\% <br> (the rated voltage of motor ) | 00.0\% | $\bigcirc$ |
| F04.09 | V/F slip compensation gain of motor | This function code is used to compensate the change of the rotation speed caused by load during compensation SVPWM control to improve the rigidity of the motor. It can be set to the rated slip frequency of the motor which is counted as below: <br> $\Delta \mathrm{f}=\mathrm{f}_{\mathrm{b}}-\mathrm{n}^{*} \mathrm{p} / 60$ | 100.0\% | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Of which, $\mathrm{f}_{\mathrm{b}}$ is the rated frequency of the motor, its function code is F02.02; $n$ is the rated rotating speed of the motor and its function code is F02.03; $p$ is the pole pair of the motor. $100.0 \%$ corresponds to the rated slip frequency $\Delta f$. Setting range: 0.0-200.0\% |  |  |
| F04.10 | Motor low frequency vibration control factor | In the SVPWM control mode, current fluctuation may occur to the motor on some frequency, especially the motor with big power. The motor | 10 | $\bigcirc$ |
| F04.11 | Motor high frequency vibration control factor | cannot run stably or overcurrent may occur. These phenomena can be canceled by adjusting this parameter. <br> Setting range of F04.10: 0-100 | 10 | O |
| F04.12 | Motor <br> vibration control threshold | Setting range of F04.11: 0-100 <br> Setting range of F04.12: 0.00 Hz - F00.03 <br> (the max. frequency) | 30.00 Hz | $\bigcirc$ |
| F04.26 | Energy-saving operation selection | 0 : No action <br> 1: Automatic energy-saving operation Motor on the light load conditions, automatically adjusts the output voltage to save energy | 0 | O |
| F04.27 | Voltage setting channel | Select the output setting channel at V/F curve separation. <br> 0 : Keypad setting voltage: the output voltage is determined by F04.28. <br> 1: Al1 setting voltage (implemented through the analog potentiometer on the keypad for the 0018 and lower models; not available for the 0022 and higher models.) <br> 2: Al2 setting voltage; <br> 3: Al3 setting voltage; <br> 4: HDI setting voltage; <br> 5: Multi-step speed setting voltage; <br> 6: PID setting voltage; <br> 7: MODBUS communication setting voltage; <br> 8-10: Reserved Note: $100 \%$ corresponds to the rated voltage of the motor. | 0 | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F04.28 | Keypad setting voltage | The function code is the voltage digital set value when the voltage setting channel is selected as "keypad selection" <br> The setting range: $0.0 \%-100.0 \%$ | 100.0\% | $\bigcirc$ |
| F04.29 | Voltage increasing time | Voltage increasing time is the time when the VFD accelerates from the output minimum voltage to the output maximum voltage. <br> Voltage decreasing time is the time when the VFD decelerates from the output maximum voltage to the output minimum voltage. <br> The setting range: $0.0-3600.0 \mathrm{~s}$ | 5.0s | $\bigcirc$ |
| F04.30 | Voltage decreasing time |  | 5.0s | $\bigcirc$ |
| F04.31 | Maximum output voltage | Set the upper and low limit of the output voltage. Setting range of F04.31:F04.32-100.0\% (the rated voltage of the motor) Setting range of F04.32: 0.0\%-F04.31 (the rated voltage of the motor) | 100.0\% | O |
| F04.32 | Minimum output voltage |  | 0.0\% | $\bigcirc$ |
| F04.33 | Flux weakening coefficient at constant power | Used to adjust the output voltage of VFD in SVPWM mode during flux weakening. <br> Note: Invalid in constant-torque mode. <br> Setting range of F04.33: 1.00-1.30 | 1.00 | - |

## F05 Group Input terminals

| Function <br> code | Name | Description | Default <br> value | Modify |
| :---: | :---: | :--- | :---: | :---: |
| F05.00 | HDI input | 0: HDI is high pulse input. See F05.50-F05.54 <br> $1:$ HDI is switch input | 0 | 0 |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F05.01 | DI1 terminal function selection | 0: No function <br> 1: Forward rotation <br> 2: Reverse rotation <br> 3: 3-wire control <br> 4: Forward jogging <br> 5: Reverse jogging <br> 6: Coast to stop <br> 7: Fault reset <br> 8: Operation pause <br> 9: External fault input <br> 10: Increasing frequency setting(UP) <br> 11: Decreasing frequency setting(DOWN) <br> 12: Cancel the frequency change setting <br> 13: Shift between $A$ setting and $B$ setting <br> 14: Shift between combination setting and <br> A setting <br> 15: Shift between combination setting and <br> $B$ setting <br> 16: Multi-step speed terminal 1 <br> 17: Multi-step speed terminal 2 <br> 18: Multi-step speed terminal 3 <br> 19: Multi- step speed terminal 4 <br> 20: Multi- step speed pause <br> 21: ACC/DEC time option terminal 1 <br> 22: ACC/DEC time option terminal 2 <br> 23: Simple PLC stop reset <br> 24: Simple PLC pause <br> 25: PID control pause <br> 26: Traverse Pause(stop at the current frequency) <br> 27: Traverse reset(return to the center frequency) <br> 28: Counter reset <br> 29: Torque control prohibition <br> 30: ACC/DEC prohibition <br> 31: Counter trigger <br> 32: Length reset <br> 33: Cancel the frequency change setting temporarily <br> 34: DC brake <br> 36: Shift the command to the keypad <br> 37: Shift the command to the terminals <br> 38: Shift the command to the communication | 1 | $\bigcirc$ |
| F05.02 | DI2 terminal function selection |  | 4 | $\bigcirc$ |
| F05.03 | DI3 terminal function selection |  | 7 | $\bigcirc$ |
| F05.04 | DI4 terminal function selection |  | 0 | $\bigcirc$ |
| F05.05 | DI5 terminal function selection |  | 0 | $\bigcirc$ |
| F05.06 | DI6 terminal function selection |  | 0 | $\bigcirc$ |
| F05.07 | DI7 terminal function selection |  | 0 | $\bigcirc$ |
| F05.08 | DI8 terminal function selection |  | 0 | $\bigcirc$ |
| F05.09 | HDI terminal function selection |  | 0 | $\bigcirc$ |


| Function code | Name | Description |  |  |  |  | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 39: Pre-exciting command <br> 40: Clear the power consumption <br> 41: Keep the power consumption <br> 42-60: Reserved <br> 61: PID pole switching <br> 62-63: Reserved <br> When the terminal acts as acceleration/ <br> deceleration time selection function, it is required to select four groups of acceleration/deceleration time via state combination of these two terminal (while terminal 1 choose 21, terminal 2 choose 22) |  |  |  |  |  |  |
|  |  | Terminal1 <br> (21) | Terminal2 (22) | ACC/ DEC time selection |  | Parameters |  |  |
|  |  | OFF | OFF | ACC/DEC time 1 |  | F00.11/F00.12 |  |  |
|  |  | ON | OFF | ACC/DEC time 2 |  | F08.00/F08.01 |  |  |
|  |  | OFF | ON | ACC/DEC time 3 |  | F08.02/F08.03 |  |  |
|  |  | ON | ON | ACC/DEC time 4 |  | F08.04/F08.05 |  |  |
| F05.10 | Polarity selection of the input terminals | The function code is used to set the polarity of the input terminals. <br> Set the bit to 0 , the input terminal is anode. <br> Set the bit to 1 , the input terminal is cathode. |  |  |  |  | 0x000 | $\bigcirc$ |
|  |  |  | BIT1 BIT | 2 | BIT3 BI |  |  |  |
|  |  | S1 | S2 | 3 | S4 | 5 |  |  |
|  |  | BIT5 | BIT6 BIT | 7 | BIT8 |  |  |  |
|  |  | S6 | S7 | 8 | HDI |  |  |  |
|  |  | The setting range: $0 \times 000-0 \times 1 \mathrm{FF}$ |  |  |  |  |  |  |
| F05.11 | ON-OFF <br> filter <br> time | Set the sample filter time of DI1-DI8 and HDI terminals. If the interference is strong, increase the parameter to avoid the disoperation. |  |  |  |  | 0.010s | $\bigcirc$ |
| F05.12 | Virtual <br> terminals setting | 0x000-0x1FF(0: Disabled, 1: Enabled ) <br> BIT0: DI1 virtual terminal <br> BIT1: DI2 virtual terminal <br> BIT2: DI3 virtual terminal <br> BIT3: DI4 virtual terminal <br> BIT4: DI5 virtual terminal <br> BIT5: DI6 virtual terminal <br> BIT6: DI7 virtual terminal <br> BIT7: DI8 virtual terminal <br> BIT8: HDI virtual terminal <br> Note: After a virtual terminal is enabled, the terminal status can be changed only through communication, and the communication address is $0 \times 200 \mathrm{~A}$. |  |  |  |  | 0x000 | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F05.13 | Terminals control running mode | Set the operation mode of the terminals control 0: 2-wire control 1 , comply the enable with the direction. This mode is widely used. It determines the rotation direction by the defined FWD and REV terminals command. <br> 1: 2-wire control 2 ; Separate the enable from the direction. FWD defined by this mode is the enabling ones. The direction depends on the state of the defined REV. <br> 2: 3 -wire control 1 ; Sin is the enabling terminal on this mode, and the running command is caused by FWD and the direction is controlled by REV. Sin is natural closed. | 0 | © |



| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F05.14 | DI1 terminal switching-on delay time | The function code defines the corresponding delay time of electrical level of the programmable terminals from switching on to switching off. <br> Setting range: 0.000-50.000s | 0.000s | $\bigcirc$ |
| F05.15 | DI1 terminal switching-off delay time |  | 0.000s | $\bigcirc$ |
| F05.16 | DI2 terminal switching-on delay time |  | 0.000s | $\bigcirc$ |
| F05.17 | DI2 terminal switching-off delay time |  | 0.000s | $\bigcirc$ |
| F05.18 | DI3 terminal switching-on delay time |  | 0.000s | $\bigcirc$ |
| F05.19 | DI3 terminal switching-off delay time |  | 0.000s | $\bigcirc$ |
| F05.20 | DI4 terminal switching-on delay time |  | 0.000s | $\bigcirc$ |
| F05.21 | DI4 terminal switching-off delay time |  | 0.000s | $\bigcirc$ |
| F05.22 | D15 terminal switching-on delay time |  | 0.000s | $\bigcirc$ |
| F05.23 | DI5 terminal switching-off delay time |  | 0.000s | $\bigcirc$ |
| F05.24 | DI6 terminal switching-on delay time |  | 0.000s | $\bigcirc$ |
| F05.25 | DI6 terminal switching-off delay time |  | 0.000s | $\bigcirc$ |
| F05.26 | DI7 terminal switching-on delay time |  | 0.000s | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F05.27 | DI7 terminal switching-off delay time |  | 0.000s | $\bigcirc$ |
| F05.28 | DI8 terminal switching-on delay time |  | 0.000s | O |
| F05.29 | DI8 terminal switching-off delay time |  | 0.000s | O |
| F05.30 | HDI terminal switching-on delay time |  | 0.000s | O |
| F05.31 | HDI terminal switching-off delay time |  | 0.000s | $\bigcirc$ |
| F05.32 | Lower limit of Al1 | Al1 setting is implemented through the analog potentiometer on the keypad for the 0018 and lower models but is not available for the and higher models. <br> Al2 setting is implemented through the control terminal AI2. <br> Al3 setting is implemented through the control terminal AI3. <br> The function code defines the relationship between the analog input voltage and its corresponding set value. If the analog input voltage beyond the set minimum or maximum input value, the VFD will count at the minimum or maximum one. <br> When the analog input is the current input, the corresponding voltage of $0-20 \mathrm{~mA}$ is $0-10 \mathrm{~V}$. In different cases, the corresponding rated value of $100.0 \%$ is different. See the application for detailed information. <br> The figure below illustrates different applications: | 0.00V | O |
| F05.33 | Corresponding setting of the lower limit of Al1 |  | 0.0\% | $\bigcirc$ |
| F05.34 | Upper limit of Al1 |  | 10.00V | $\bigcirc$ |
| F05.35 | Corresponding setting of the upper limit of Al1 |  | 100.0\% | O |
| F05.36 | Al1 input filter time |  | 0. 100s | $\bigcirc$ |
| F05.37 | Lower limit of Al2 |  | 0.00V | $\bigcirc$ |
| F05.38 | Corresponding setting of the lower limit of Al2 |  | 0.0\% | $\bigcirc$ |
| F05.39 | Upper limit of Al2 |  | 10.00V | $\bigcirc$ |
| F05.40 | Corresponding setting of |  | 100.0\% | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
|  | the upper limit of AI2 | Corresponding setting |  |  |
| F05.41 | Al2 input filter time | / | 0. 100s | $\bigcirc$ |
| F05.42 | Lower limit of Al3 | $\xrightarrow[1]{-10 \mathrm{~V}} \frac{1}{10 \mathrm{VN}} 2$ | -10.00V | $\bigcirc$ |
| F05.43 | Corresponding setting of the lower limit of Al3 | Input filter time: this parameter is used to adjust | -100.0\% | $\bigcirc$ |
| F05.44 | Middle value of Al3 | the sensitivity of the analog input. Increasing the value properly can enhance the anti-interference | 0.00 V | $\bigcirc$ |
| F05.45 | Corresponding middle setting of Al3 | of the analog, but weaken the sensitivity of the analog input <br> Note: Analog Al1 and AI2 can support 0 (2)- 10V | 0.0\% | O |
| F05.46 | Upper limit of Al3 | or 0 (4) -20 mA input, when AI1 and AI2 selects 0 (4)-20mA input, the corresponding voltage of | 10.00V | $\bigcirc$ |
| F05.47 | Corresponding setting of the upper limit of Al3 | 20 mA is 10 V . Al3 can support the input of $10 \mathrm{~V}-+10 \mathrm{~V}$. <br> Setting range of F05.32: 0.00V-F05.34 <br> Setting range of F05.33: -100.0\%-100.0\% | 100.0\% | $\bigcirc$ |
| F05.48 | Al3 input filter time | Setting range of F05.35: - $100.0 \%-100.0 \%$ <br> Setting range of $\mathrm{F} 05.36: 0.000 \mathrm{~s}-10.000 \mathrm{~s}$ <br> Setting range of F05.37: 0.00V-F05.39 <br> Setting range of F05.38: -100.0\%-100.0\% <br> Setting range of F05.39:F05.37-10.00V <br> Setting range of F05.40: -100.0\%-100.0\% <br> Setting range of F05.41: 0.000s-10.000s <br> Setting range of F05.42: -10.00V-F05.44 <br> Setting range of F05.43: -100.0\%-100.0\% <br> Setting range of F 05.44 : $\mathrm{F} 05.42-\mathrm{F} 05.46$ <br> Setting range of F05.45: - 100.0\%-100.0\% <br> Setting range of F05.46:F05.44-10.00V <br> Setting range of F05.47: - 100.0\%-100.0\% <br> Setting range of F05.48: 0.000s-10.000s | 0. 100s | $\bigcirc$ |
| F05.50 | Lower limit frequency of HDI | 0.000kHz-F05.52 | $\begin{gathered} 0.000 \\ \mathrm{kHz} \end{gathered}$ | O |


| Function <br> code | Name | Description | Default <br> value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F05.51 | Corresponding <br> setting of HDI <br> low frequency <br> setting | $-100.0 \%-100.0 \%$ | $0.0 \%$ | 0 |
| F05.52 | Upper limit <br> frequency of <br> HDI | F05.50-50.00kHz | 50.00 | O |
|  | Corresponding <br> setting of upper <br> limit frequency <br> of HDI | $-100.0 \%-100.0 \%$ | $100.0 \%$ | o |
| F05z |  |  |  |  |
|  | HDI frequency <br> input filter time | $0.000 \mathrm{~s}-10.000 \mathrm{~s}$ | 0.100 s | O |

F06 Group Output terminals

| Function <br> code | Name | Description | Default <br> value | Modify |
| :---: | :---: | :--- | :---: | :---: |
| F06.00 | HDO output | The function selection of the high-speed pulse <br> output terminals. <br> 0: Open collector pole high speed pulse output: <br> The max. pulse frequency is 50.0kHz. See <br> F06.27-F06.31 for detailed information of the <br> related functions. <br> 1: Open collector pole output. See F06.02for <br> detailed information of the related functions. | 0 | 0 |
| F06.01 | Y1 output | 0: Invalid | 0 |  |
| F06.02 | HDO output | 1: In operation | 0 | 0 |
| F06.03 | Relay RO1 <br> output | 2: Forward rotation <br> 3: Reverse rotation <br> 4: Jogging <br> 5: The VFD fault <br> 6: Frequency degree test FDT1 <br> 7: Frequency degree test FDT2 <br> 8: Frequency arrival <br> 9: Zero speed running (output at running state) <br> 10: Upper limit frequency arrival <br> 11: Lower limit frequency arrival | 0 | 0 |
| F06.04 | Relay RO2 <br> output | 5 | 0 |  |


| Function code | Name | Description |  |  |  | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 12: Ready for operation <br> 13: Pre-magnetizing <br> 14: Overload pre-alarm <br> 15: Underload pre-alarm <br> 16: Completion of simple PLC step <br> 17: Completion of simple PLC cycle <br> 18: Setting count value arrival <br> 19: Defined count value arrival <br> 20: External fault valid <br> 21: Zero speed running (output at both running and stop state) <br> 22: Running time arrival <br> 23: MODBUS communication virtual terminals output <br> 24: To-ground short circuit output pre-alarm (F08.23 must be set to 1.) <br> 26: DC bus voltage establishment <br> 27: Auxiliary motor 1 <br> 28: Auxiliary motor 2 |  |  |  |  |  |
| F06.05 | Polarity <br> selection of output terminals | The function code is used to set the pole of the output terminal. <br> When the current bit is set to 0 , output terminal is positive. <br> When the current bit is set to 1 , output terminal is negative. <br> Setting range: $0-F$ |  |  |  | 0 | $\bigcirc$ |
| F06.06 | Y1 <br> switching-on delay time | The function code defines the corresponding delay time of the electrical level change during the programmable terminal switching on and off. <br> The setting range: $0.000-50.000$ s <br> Note:F06.08 and F06.09are valid only when F06.00=1. |  |  |  | 0.000s | $\bigcirc$ |
| F06.07 | Y1 <br> switching-off delay time |  |  |  |  | 0.000s | $\bigcirc$ |
| F06.08 | HDO <br> switching-on delay time |  |  |  |  | 0.000s | $\bigcirc$ |
| F06.09 | HDO switching-off delay time |  |  |  |  | 0.000s | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F06.10 | RO1 <br> switching-on delay time |  | 0.000s | $\bigcirc$ |
| F06.11 | RO1 <br> switching-off delay time |  | 0.000s | $\bigcirc$ |
| F06.12 | RO2 <br> switching-on delay time |  | 0.000s | $\bigcirc$ |
| F06.13 | RO2 <br> switching-off delay time |  | 0.000s | $\bigcirc$ |
| F06.14 | AO1 output | 0 : Running frequency <br> 1: Setting frequency <br> 2: Ramp reference frequency <br> 3: Running rotation speed (relative to twice the motor synchronization rotation speed) <br> 4: Output current <br> (relative to twice the VFD rated current) <br> 5: Output current <br> (relative to twice the motor rated current) <br> 6 : Output voltage (relative to 1.5 times the rated voltage of the VFD) <br> 7: Output power (relative to twice the rated power of the motor) <br> 9: Output torque (relative to twice the rated torque of the motor) <br> 10: Analog Al1 input value (implemented through the analog potentiometer on the keypad for the 0018 and lower models; not available for the 0022 and higher models.) <br> 11: Analog AI2 input value <br> 12: Analog Al3 input value <br> 13: High speed pulse HDI input value <br> 14: MODBUS communication set value 1 <br> 15: MODBUS communication set value 2 <br> 16-21: Reserved; <br> 22: Torque current (relative to triple the motor rated current) <br> 23: Ramp reference frequency(with sign) | 0 | $\bigcirc$ |
| F06.15 | AO2 output |  | 0 | $\bigcirc$ |
| F06.16 | HDO high-speed pulse output selection |  | 0 | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F06.17 | Lower limit of AO1 output | The above function codes define the relative relationship between the output value and analog output. When the output value exceeds the range of set maximum or minimum output, it will count according to the low-limit or upper-limit output. When the analog output is current output, 1 mA equals to 0.5 V . <br> In different cases, the corresponding analog output of $100 \%$ of the output value is different. For details, see section 7.10 PID control. <br> Setting range of F06. 17: -100.0\%-F06. 19 <br> Setting range of F06.18: 0.00V-10.00V <br> Setting range of F06.19: F06.17-100.0\% <br> Setting range of F06.20: 0.00V-10.00V <br> Setting range of F06.21: 0.000s-10.000s <br> Setting range of F06.22: $0.0 \%-F 06.24$ <br> Setting range of $\mathrm{F} 06.23: 0.00 \mathrm{~V}-10.00 \mathrm{~V}$ <br> Setting range of F06.24:F06.22-100.0\% <br> Setting range of F06.25: $0.00 \mathrm{~V}-10.00 \mathrm{~V}$ <br> Setting range of F06.26: 0.000s-10.000s <br> Setting range of F06.27: 0.000s-10.000s <br> Setting range of $\mathrm{F} 06.28: 0.00-50.00 \mathrm{kHz}$ <br> Setting range of F06.29:F06.27-100.0\% <br> Setting range of F06.30: $0.00-50.00 \mathrm{kHz}$ <br> Setting range of F06.31: 0.000s- 10.000s | 0.0\% | $\bigcirc$ |
| F06.18 | Corresponding AO1 output to the lower limit |  | 0.00V | O |
| F06.19 | Upper limit of AO1 output |  | 100.0\% | O |
| F06.20 | Corresponding AO1 output to the upper limit |  | 10.00V | O |
| F06.21 | AO1 output filter time |  | 0.000s | O |
| F06.22 | Lower limit of AO2 output |  | 0.0\% | O |
| F06.23 | Corresponding AO2 output to the lower limit |  | 0.00 V | $\bigcirc$ |
| F06.24 | Upper limit of AO2 output |  | 100.0\% | O |
| F06.25 | Corresponding AO2 output to the upper limit |  | 10.00V | $\bigcirc$ |
| F06.26 | AO2 output filter time |  | 0.000s | $\bigcirc$ |
| F06.27 | Lower limit of HDO output |  | 0.00\% | $\bigcirc$ |
| F06.28 | Corresponding HDO output to the lower limit |  | 0.00 kHz | $\bigcirc$ |
| F06.29 | Upper limit of HDO output |  | 100.0\% | $\bigcirc$ |
| F06.30 | Corresponding HDO output to the upper limit |  | $\begin{gathered} 50.00 \\ \mathrm{kHz} \end{gathered}$ | $\bigcirc$ |
| F06.31 | HDO output filter time |  | 0.000s | $\bigcirc$ |

F07 Group Human-Machine Interface

| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F07.00 | User's password | 0-65535 <br> The password protection will be valid when setting any non-zero number. <br> 00000: Clear the previous user's password, and make the password protection invalid. <br> After the user's password becomes valid, if the password is incorrect, users cannot enter the parameter menu. Only correct password can make the user check or modify the parameters. Please remember all users' passwords. <br> Retreat editing state of the function codes and the password protection will become valid in 1 minute If the password is available, press PRG/ESD to enter into the editing state of the function codes, and then "0.0.0.0.0" will be displayed. Unless input right password, the operator cannot enter into it. <br> Note: Restoring to the default value can clear the password, please use it with caution. | 0 | $\bigcirc$ |
| F07.01 | Parameter copy | The function code determines the mode of parameters copy. <br> 0: No operation <br> 1: Upload the local function parameter to the keypad <br> 2: Download the keypad function parameter to local address(including the motor parameters) <br> 3: Download the keypad function parameter to local address (excluding the motor parameter of F02 group) <br> 4: Download the keypad function parameters to local address (only for the motor parameter of F02 group) <br> Note: After completing the 1-4 operations, the parameter will come back to 0 automatically. The function of upload and download excludes the factory parameters of F29.. | 0 | $\bigcirc$ |
| F07.02 | QUICK/JOG <br> function selection | Ones: Function of QUICK/JOG key <br> 0 : No function <br> 1: Jogging. Press QUICK/JOG to begin the | 1 | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
|  |  | jogging running. <br> 2: Shift the display state by the shifting key. Press QUICK/JOG \| shift the displayed function code from right to left. <br> 3: Shift between forward rotations and reverse rotations. Press QUICK/JOG td shift the direction of the frequency commands. This function is only valid in the keypad commands channels. <br> 4: Clear UP/DOWN settings. Press QUICK/JOG to clear the set value of UP/DOWN. <br> 5: Coast to stop. Press QUCK/JOG td coast to stop. <br> 6: Shift the running commands source. Press QUICK/JOG to shift the running commands source. <br> 7: Quick commission mode(committee according to the non-factory parameter) <br> Note: Press QUICK/JOG to shift between forward rotation and reverse rotation, the VFD does not record the state after shifting during powering off. The VFD will run according to parameter F00.13 during next powering on. |  |  |
| F07.03 | Shifting sequence selection of QUICK/JOG\| commands | When F07.02=6, set the shifting sequence of running command channels. <br> 0 : Keypad control $\rightarrow$ terminals control $\rightarrow$ communication control <br> 1: Keypad control $\leftarrow$ terminals control <br> 2: Keypad control $\longleftrightarrow$ communication control <br> 3: Terminals control $\longleftrightarrow$ communication control | 0 | O |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F07.04 | STOP/RST <br> stop function | STOP/RST is valid for stop function. <br> STOP/RST is valid in any state for the fault reset. <br> 0 : Only valid for the keypad control <br> 1: Both valid for keypad and terminals control <br> 2: Both valid for keypad and communication <br> 3: Valid for all control modes | 0 | $\bigcirc$ |
| F07.05 | Parameters <br> state 1 | 0x0000-0xFFFF <br> BITO: running frequency ( Hz on) <br> BIT1: set frequency ( Hz flickering) <br> BIT2: bus voltage ( Hz on) <br> BIT3: output voltage (V on) <br> BIT4: output current (A on) <br> BIT5: running rotation speed (rpm on) <br> BIT6: output power (\% on) <br> BIT7: output torque (\% on) <br> BIT8: PID reference (\% flickering) <br> BIT9: PID feedback value (\% on) <br> BIT10: input terminals state <br> BIT11: output terminals state <br> BIT12: torque set value (\% on) <br> BIT13: pulse counter value <br> BIT14: length value <br> BIT15: PLC and the current stage in multi-step speed | 0x03FF | $\bigcirc$ |
| F07.06 | Parameters state 2 | 0x0000-0xFFFF <br> BITO: Al1 (V on) (implemented through the analog potentiometer on the keypad for the 0018 and lower models; not available for the and higher models.) <br> BIT1: AI2 (V on) <br> BIT2: AI3 (V on) <br> BIT3: HDI frequency <br> BIT4: motor overload percentage (\% on) <br> BIT5: the VFD overload percentage (\% on) <br> BIT6: ramp frequency given value ( Hz on) <br> BIT7: linear speed <br> BIT8: AC inlet current (A on) <br> BIT9: upper limit frequency ( Hz on) | 0x0000 | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F07.07 | The parameter in the stop state | 0x0000-0xFFFF <br> BITO: set frequency <br> (Hz on, frequency flickering slowly) <br> BIT1: bus voltage (V on) <br> BIT2: input terminals state <br> BIT3: output terminals state <br> BIT4: PID reference (\% flickering) <br> BIT5: PID feedback value (\% flickering) <br> BIT6: reserved <br> BIT7: analog Al1 value (V on) (implemented through the analog potentiometer on the keypad for the 0018 and lower models; not available for the 0022 and higher models.) BIT8: analog AI2 value (V on) <br> BIT9: analog Al3 value (V on) <br> BIT10: high speed pulse HDI frequency <br> BIT11: PLC and the current step in multi-step <br> speed <br> BIT12: pulse counters <br> BIT14: upper limit frequency ( Hz on) | 0x00FF | $\bigcirc$ |
| F07.08 | Frequency coefficient | 0.01-10.00 <br> Displayed frequency=running frequency*F07.08 | 1.00 | $\bigcirc$ |
| F07.09 | Rotation speed coefficient | $0.1-999.9 \%$ <br> Mechanical rotation speed $=120^{*}$ displayed running frequency $\times$ F07.09/motor pole pairs | 100.0\% | $\bigcirc$ |
| F07.10 | Linear speed coefficient | $\begin{aligned} & \text { 0.1-999.9\% } \\ & \text { Linear speed }=\text { Mechanical rotation speed } \times \text { F07.10 } \end{aligned}$ | 1.0\% | $\bigcirc$ |
| F07.11 | $\begin{array}{\|c} \text { Rectifier bridge } \\ \text { module } \\ \text { temperature } \\ \hline \end{array}$ | $0-100.0^{\circ} \mathrm{C}$ | 1 | - |
| F07.12 | IGBT module temperature | $0-100.0^{\circ} \mathrm{C}$ | 1 | $\bullet$ |
| F07.13 | Software version | 1.00-655.35 | 1 | - |
| F07.14 | Local accumulative running time | 0-65535h | 1 | $\bullet$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F07.15 | High bit of power consumption | Display the power used by the VFD. <br> The power consumption of the VFD | 1 | $\bigcirc$ |
| F07.16 | Low bit of power consumption | Setting range of F07.15: 0-65535 kWh (*1000) <br> Setting range of F07.16: 0.0-999.9 kWh | / | $\bigcirc$ |
| F07.17 | VFD type | 0 : NORMAL duty <br> 1: HEAVY duty | / | $\bigcirc$ |
| F07.18 | Rated power of the VFD | 0.4-3000.0kW | 1 | $\bigcirc$ |
| F07.19 | Rated voltage of the VFD | 50-1200V | 1 | $\bigcirc$ |
| F07.20 | Rated current of the VFD | 0.1-6000.0A | / | $\bigcirc$ |
| F07.21 | Factory bar code 1 | 0x0000-0xFFFF | / | $\bigcirc$ |
| F07.22 | Factory bar code 2 | 0x0000-0xFFFF | / | $\bigcirc$ |
| F07.23 | Factory bar code 3 | 0x0000-0xFFFF | / | $\bigcirc$ |
| F07.24 | Factory bar code 4 | 0x0000-0xFFFF | / | $\bigcirc$ |
| F07.25 | Factory bar code 5 | 0x0000-0xFFFFF | / | $\bigcirc$ |
| F07.26 | Factory bar code 6 | 0x0000-0xFFFFF | / | $\bigcirc$ |
| F07.27 | Type of present fault | 0 : No fault <br> 1: IGBT U phase protection (OUt1) | / | $\bigcirc$ |
| F07.28 | Type of the last fault | 2: IGBT V phase protection (OUt2) <br> 3: IGBT W phase protection (OUt3) | / | $\bigcirc$ |
| F07.29 | Type of the last but one fault | $\begin{aligned} & \text { 5: OC2 } \\ & \text { 6: OC3 } \end{aligned}$ | / | $\bigcirc$ |
| F07.30 | Type of the last but two fault | 7: OV1 <br> 8: OV2 | / | $\bigcirc$ |
| F07.31 | Type of the last but three fault | $\begin{aligned} & \text { 9: OV3 } \\ & \text { 10: UV } \end{aligned}$ | / | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F07.32 | Type of the last but four fault | 11: Motor overload (OL1) <br> 12: The VFD overload (OL2) <br> 13: Input side phase loss (SPI) <br> 14: Output side phase loss (SPO) <br> 15: Overheat of the rectifier module ( OH 1 ) <br> 16: Overheat fault of the inverter module ( OH 2 ) <br> 17: External fault (EF) <br> 18: 485 communication fault (CE) <br> 19: Current detection fault (ItE) <br> 20: Motor autotune fault ( tE ) <br> 21: EEPROM operation fault (EEP) <br> 22: PID response offline fault (PIDE) <br> 23: Braking unit fault (bCE) <br> 24: Running time arrival (END) <br> 25: Electrical overload (OL3) <br> 26: Keypad communication fault (PCE) <br> 27: Parameter uploading fault (UPE) <br> 28: Parameter downloading fault (DNE) <br> 32: Grounding short circuit fault 1 (ETH1) <br> 33: Grounding short circuit fault 2 (ETH2) <br> 36: Undervoltage fault (LL) | 1 | $\bullet$ |
| F07.33 | Running frequency at present fault |  | 0.00 Hz | $\bullet$ |
| F07.34 | Ramp reference frequency at present fault |  | 0.00 Hz | $\bullet$ |
| F07.35 | Output voltage at the present fault |  | 0 V | - |
| F07.36 | Output current at present fault |  | 0.0A | $\bullet$ |
| F07.37 | Bus voltage at present fault |  | 0.0 V | $\bullet$ |
| F07.38 | The max. temperature at present fault |  | $0.0^{\circ} \mathrm{C}$ | $\bullet$ |
| F07.39 | Input terminals state at present fault |  | 0 | $\bullet$ |
| F07.40 | Output terminals state at present fault |  | 0 | $\bullet$ |
| F07.41 | Running frequency at the last fault |  | 0.00 Hz | $\bullet$ |
| F07.42 | Ramp reference frequency at the last fault |  | 0.00 Hz | $\bullet$ |
| F07.43 | Output voltage at the last fault |  | 0 V | $\bullet$ |
| F07.44 | The output current at the last fault |  | 0.0A | $\bullet$ |
| F07.45 | Bus voltage at the last fault |  | 0.0V | $\bullet$ |
| F07.46 | The max. temperature at the last fault |  | $0.0^{\circ} \mathrm{C}$ | $\bullet$ |
| F07.47 | Input terminals state at the last fault |  | 0 | $\bullet$ |
| F07.48 | Output terminals state at the last fault |  | 0 | - |
| F07.49 | Running frequency at the last but one fault |  | 0.00 Hz | $\bullet$ |


| Function <br> code | Name | Description | Default <br> value | Modify |
| :---: | :--- | :---: | :---: | :---: |
| F07.50 | Output voltage at the last but one faults | 0.00 Hz | - |  |
| F07.51 | Output current at the last but one faults | 0 V | - |  |
| F07.52 | Output current at the last but one fault | 0.0 A | - |  |
| F07.53 | Bus voltage at the last but one fault | 0.0 V | - |  |
| F07.54 | The max. temperature at the last but one fault | $0.0^{\circ} \mathrm{C}$ | - |  |
| F07.55 | Input terminals state at the last but one fault | 0 | $\bigcirc$ |  |
| F07.56 | Output terminals state at the last but one fault | 0 | - |  |

F08 Group Enhanced function

| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F08.00 | ACC time 2 | Refer to F00.11 and F00.12for detailed definition. SG200 series define four groups of ACC/DEC time which can be selected by F5 group. The first group of ACC/DEC time is the factory default one. <br> Setting range: 0.0-3600.0s | Model depended | O |
| F08.01 | DEC time 2 |  | Model depended | O |
| F08.02 | ACC time 3 |  | Model depended | O |
| F08.03 | DEC time 3 |  | Model depended | O |
| F08.04 | ACC time 4 |  | Model depended | $\bigcirc$ |
| F08.05 | DEC time 4 |  | Model depended | $\bigcirc$ |
| F08.06 | Jogging frequency | This parameter is used to define the reference frequency during jogging. <br> Setting range: $0.00 \mathrm{~Hz}-\mathrm{F} 00.03$ (the max. frequency) | 5.00 Hz | O |
| F08.07 | $\begin{aligned} & \text { Jogging ACC } \\ & \text { time } \end{aligned}$ | The jogging ACC time means the time needed if the VFD runs from 0 Hz to the max. frequency. The jogging DEC time means the time needed if the VFD goes from the max. frequency (F00.03) to 0 Hz . <br> Setting range: $0.0-3600.0 \mathrm{~s}$ | Model depended | $\bigcirc$ |
| F08.08 | Jogging DEC time |  | Model depended | $\bigcirc$ |
| F08.09 | Jumping frequency 1 | When the set frequency is in the range of jumping frequency, the VFD will run at the edge of the jumping frequency. <br> The VFD can avoid the mechanical resonance point by setting the jumping frequency. The VFD | 0.00 Hz | $\bigcirc$ |
| F08.10 | Jumping <br> frequency range 1 |  | 0.00 Hz | $\bigcirc$ |



| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
|  |  | The declining time of the traverse frequency: The time from the highest point to the lowest one. <br> Setting range of F08.15: 0.0-100.0\% (relative to the set frequency) <br> Setting range of F08.16: 0.0-50.0\% (relative to the traverse range) <br> Setting range of F08.17: 0.1-3600.0s <br> Setting range of F08.18: 0.1-3600.0s |  |  |
|  |  | 0.0-3600.0s |  |  |
|  |  | Valid for F01.19 selected as 2 , the delay time to enter hibernation. |  |  |
| F08.23 | To-ground short circuit detection during running | 0: Disable <br> 1: Enable | 0 | $\bigcirc$ |
| F08.24 | Power-on to-ground short circuit detection threshold | 0\%-100\% | 50\% | $\bigcirc$ |
| F08.25 | Setting counting value |  | 0 | $\bigcirc$ |
| F08.26 | Reference counting value | The counter counts the input pulse signals through the $S$ terminals (with the counter triggering function) or HDI (F05.00=1). <br> When the counter achieves a fixed number, the multi-function output terminals will output the | 0 | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
|  |  | signal of "fixed counting number arrival" and the counter go on working; when the counter achieves a setting number, the multi-function output terminals will output the signal of "setting counting number arrival", the counter will clear all numbers and stop to recount before the next pulse. <br> The setting counting value F08.26 should be no more than the setting counting value F08.25. <br> The function is illustrated as below: <br> Setting range of F08.26: 0-F08.25 |  |  |
| F08.27 | Setrunnig time | Pre-set running time of the VFD. When the accumulative running time achieves the set time, the multi-function digital output terminals will output the signal of "running time arrival". <br> Setting range: 0-65535 min | 0m | $\bigcirc$ |
| F08.28 | Fault reset times | The time of the fault reset: set the fault reset time by selecting this function. If the reset time exceeds this | 0 | $\bigcirc$ |
| F08.29 | Interval time of automatic fault reset | set value, the VFD will stop for the fault and wait to be repaired. <br> The interval time of the fault reset: The interval between the time when the fault occurs and the time when the reset action occurs. Setting range of F08.28: 0-10. Setting range of F08.29: 0.13600.0s | 1.0s | $\bigcirc$ |
| F08.30 | Frequency decreasing ratio of the dropping control | The output frequency of the VFD changes as the load. And it is mainly used to balance the power when several VFDs drive one load. <br> Setting range: $0.00-10.00 \mathrm{~Hz}$ | 0.00 Hz | $\bigcirc$ |
| F08.32 | FDT1 electrical level detection value | When the output frequency exceeds the corresponding frequency of FDT electrical level, the multi-function digital output terminals will output the | 50.00 Hz | $\bigcirc$ |
| F08.33 | FDT1 retention detection value | frequency decreases to a value | 5.0\% | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F08.34 | FDT2 electrical level detection value | lower than (FDT electrical level—FDT retention detection value) the corresponding frequency, the signal is invalid. Below is the waveform diagram: | 50.00 Hz | $\bigcirc$ |
| F08.35 | FDT2 retention detection value | Setting range of $\mathrm{F} 08.32: 0.00 \mathrm{~Hz}-\mathrm{F} 00.03$ (the max. frequency) <br> Setting range of F08.33: 0-100.0\% <br> (FDT1 electrical level) <br> Setting range of F08.34: 0.00 Hz - F00.03 (the max. frequency) <br> Setting range of F08.35: 0.0-100.0\% (FDT2 electrical level) | 5.0\% | $\bigcirc$ |
| F08.36 | Amplitude <br> value for frequency <br> arrival <br> detection | When the output frequency is among the below or above range of the set frequency, the multi-function digital output terminal will output the signal of "frequency arrival", see the diagram below for detailed information: <br> The setting range: $0.00 \mathrm{~Hz}-\mathrm{F} 00.03$ (the max. frequency) | 0.00 Hz | O |
| F08.37 | Energy braking enable | This parameter is used to control the internal braking unit. <br> 0: Disable <br> 1: Enable <br> Note: Only applicable to the models with internal braking units. | 0 | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F08.38 | Threshold voltage | After setting the original bus voltage, adjust this parameter to break the load appropriately. The factory value changes with voltage level. <br> Setting range: 200.0-2000.0V | $\begin{gathered} \text { For 220V: } \\ 380.0 \mathrm{~V} \end{gathered}$ | $\bigcirc$ |
|  |  |  | $\begin{array}{\|c} \left\lvert\, \begin{array}{c} \text { For } 380 \mathrm{~V}: \\ 700.0 \mathrm{~V} \end{array}\right. \\ \hline \end{array}$ |  |
|  |  |  | $\begin{aligned} & \text { For 660V: } \\ & 1120.0 \mathrm{~V} \end{aligned}$ |  |
| F08.39 | Cooling fan running mode | Set the operation mode of the cooling fan. <br> 0 : Normal mode, after the rectifier receives operation command or the detected temperature of module is above $45^{\circ} \mathrm{C}$ or the module current is above $20 \%$ of the rated current, the fan rotates. <br> 1: The fan keeps on running after power on (generally for the site with high temperature and humidity) <br> Setting range: 0-1 | 0 | $\bigcirc$ |
| F08.40 | PWM selection | 0x00-0x21 <br> LED ones: PWM mode selection <br> 0 : PWM mode 1, three-phase modulation and two-modulation <br> 1: PWM mode 2, three-phase modulation <br> LED tens: low-speed carrier frequency limit mode <br> 0 : Low-speed carrier frequency limit mode 1, the carrier frequency will limit to 2 k if it exceeds 2 k at low speed <br> 1: Low-speed carrier frequency limit mode 2, the carrier frequency will limit to 4 k if it exceeds 4 k at low speed <br> 2: No limit | 00 | $\bigcirc$ |
|  |  |  |  |  |
| F08.41 | Over modulation selection | 0x00-0x11 | 0x01 | $\bigcirc$ |
|  |  | LED ones |  |  |
|  |  | 0: Invalid |  |  |
|  |  | 1: Valid |  |  |
|  |  | LED tens |  |  |
|  |  | 0 : Light overmodulation |  |  |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F08.42 | Keypad data control | $0 \times 000-0 \times 1223$ <br> LED ones: frequency enable selection <br> 0 : Both $\wedge / \vee$ keys and digital potentiometer adjustments are valid <br> 1: Only $\wedge / \vee$ keys adjustment is valid <br> 2: Only digital potentiometer adjustments is valid <br> 3: Neither $\wedge / \checkmark$ keys nor digital potentiometer adjustments are valid <br> LED tens: frequency control selection <br> 0: Only valid when $\mathrm{F} 00.06=0$ or $\mathrm{F} 00.07=0$ <br> 1: Valid for all frequency setting manner <br> 2: Invalid for multi-step speed when multi-step speed has the priority <br> LED hundreds: action selection during stopping <br> 0 : Setting is valid <br> 1: Valid during running, cleared after stopping <br> 2: Valid during running, cleared after receiving the stop command <br> LED thousands: $\wedge / \vee$ keys and digital potentiometer integral function <br> 0 : The integral function is valid <br> 1: The integral function is invalid | 0x0000 | O |
| F08.43 | Integral ratio of the keypad potentiometer | 0.01-10.00s | 0.10s | O |
| F08.44 | UP/DOWN <br> terminals control | $0 \times 00-0 \times 221$ <br> LED ones: frequency control selection <br> 0 : UP/DOWN terminals setting valid <br> 1: UP/DOWN terminals setting valid <br> LED tens: frequency control selection <br> 0: Only valid when $\mathrm{F} 00.06=0$ or $\mathrm{F} 00.07=0$ <br> 1: All frequency means are valid <br> 2: When the multi-step are priority, it is invalid to the multi-step <br> LED hundreds: action selection when stop <br> 0 : Setting valid <br> 1: Valid in the running, clear after stop <br> 2: Valid in the running, clear after receiving the stop commands | 0x000 | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F08.45 | UP terminals frequency incremental change rate | 0.01-50.00Hz/s | $\begin{aligned} & 0.50 \\ & \mathrm{~Hz} / \mathrm{s} \end{aligned}$ | $\bigcirc$ |
| F08.46 | DOWN <br> terminals frequency incremental change rate | 0.01-50.00 Hz/s | $\begin{aligned} & 0.50 \\ & \mathrm{~Hz} / \mathrm{s} \end{aligned}$ | $\bigcirc$ |
| F08.47 | Action when the frequency setting is off | $0 \times 000-0 \times 111$ <br> LED ones: Action selection when power off. <br> 0 : Save when power off <br> 1: Clear when power off <br> LED tens: Action selection when MODBUS set frequency off <br> 0 : Save when power off <br> 1: Clear when power off <br> LED hundreds: The action selection when other frequency set frequency off <br> 0 : Save when power off <br> 1: Clear when power off | 0x000 | $\bigcirc$ |
| F08.48 | High bit of initial power consumption | This parameter is used to set the original value of the power consumption. <br> The original value of the power consumption | 0 | $\bigcirc$ |
| F08.49 | Low bit of initial power consumption | $\begin{aligned} & =F 08.48^{*} 1000+F 08.49(\mathrm{kWh}) \\ & \text { Setting range of F08.48: 0-59999 } \\ & \text { Setting range of F08.49: } 0.0-999.9 \end{aligned}$ | 0.0 | $\bigcirc$ |
| F08.50 | Magnetic flux braking | This function code is used to enable magnetic flux. <br> 0 : Invalid. <br> 100-150: The bigger the coefficient, the stronger the braking is. <br> This VFD is used to increase the magnetic flux to decelerate the motor. The energy generated by the motor during braking can be converted into heat energy by increasing the magnetic flux. <br> The VFD monitors the state of the motor continuously even during the magnetic flux period. So the magnetic flux can be used in the motor | 0 | $\bullet$ |


| Function <br> code | Name | Description | Default <br> value | Modify |
| :---: | :---: | :--- | :---: | :---: |
|  |  | stop, as well as to change the rotation speed of <br> the motor. Its other advantages are: <br> Brake immediately after the stop command. It <br> does not need to wait the magnetic flux weaken. <br> Better cooling for motors. The current of the stator <br> other than the rotor increases during magnetic flux <br> braking, while the cooling of the stator is more <br> effective than the rotor. | 0.56 | 0 |
| F08.51 | Current <br> regulation <br> coefficient on <br> input side | This function code is used to adjust the displayed <br> current of the AC input side. <br> Setting range: $0.00-1.00$ | 0 |  |

## F09 Group PID control

| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F09.00 | PID reference source | When the frequency command selection (F00.06, F00.07) is 7 or the voltage setting channel selection (F04.27) is 6 , the running mode of the VFD is procedure PID controlled. <br> The parameter determines the target reference channel during the PID procures. <br> 0: Set byF09.01 <br> 1: Analog channel Al1 reference (implemented through the analog potentiometer on the keypad for the 0018 and lower models; not available for the 0022 and higher models.) <br> 2: Analog channel AI2 reference <br> 3: Analog channel Al3 set <br> 4: High speed pulse HDI set <br> 5: Multi-step speed set <br> 6: MODBUS communication set <br> The setting target of procedure PID is a relative one, $100 \%$ of the setting equals to $100 \%$ of the response of the controlled system. <br> The system is calculated according to the relative value ( $0-100.0 \%$ ). <br> 7-9: Reserved <br> Note: <br> Multi-step speed reference, it is realized by setting F10 group parameters. | 0 | O |


| Function <br> code | Name | Description | Default <br> value | Modify |
| :---: | :---: | :--- | :---: | :---: |
| F09.01 | PID value <br> reference | When F09.00=0, set the parameter whose basic <br> value is the feedback value of the system. <br> The setting range: -100.0\%- 100.0\% | $0.0 \%$ | O |
| F09.02 | PID feedback <br> source | Select the PID channel by the parameter. <br> 0: Analog channel AI1 feedback (implemented <br> through the analog potentiometer on the keypad <br> for the 0018 and lower models; not available <br> for the 0022 and higher models.) <br> 1: Analog channel AI2 feedback <br> 2: Analog channel AI3 feedback <br> 3: High speed HDI feedback <br> 4: MODBUS communication feedback <br> 5: MAX(AI2,AI3) <br> 6-7: Reserved <br> Note: The reference channel and the feedback <br> channel cannot coincide, otherwise, PID cannot <br> control effectively. | O |  |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F09.05 | Integral time (Ti) | This parameter determines the speed of PID adjustor to carry out integral adjustment on the deviation of PID feedback and reference. <br> When the deviation of PID feedback and reference is $100 \%$, the integral adjustor works continuously after the time (ignoring the proportional effect and differential effect) to achieve the max. frequency (F00.03) or the max. voltage (F04.31). Shorter the integral time, stronger is the adjustment <br> Setting range: 0.00-10.00s | 0.00s | $\bigcirc$ |
| F09.06 | Differential time (Td) | This parameter determines the strength of the change ratio when PID adjustor carries out integral adjustment on the deviation of PID feedback and reference. <br> If the PID feedback changes $100 \%$ during the time, the adjustment of integral adjustor (ignoring the proportional effect and differential effect) is the max. frequency (F00.03) or the max. voltage (F04.31). Longer the integral time, stronger is the adjusting. <br> Setting range: $0.00-10.00 \mathrm{~s}$ | 0.00s | $\bigcirc$ |
| F09.07 | Sampling cycle (T) | This parameter means the sampling cycle of the feedback. The modulator calculates in each sampling cycle. The longer the sapling cycle is, the slower the response is. <br> Setting range: $0.000-10.000 \mathrm{~s}$ | 0. 100s | $\bigcirc$ |
| F09.08 | PID <br> control <br> deviation <br> limit | The output of PID system is relative to the maximum deviation of the close loop reference. As shown in the diagram below, PID adjustor stops to work during the deviation limit. Set the function properly to adjust the accuracy and stability of the system. <br> Setting range: $0.0-100.0 \%$ | 0.0\% | $\bigcirc$ |
| F09.09 | Output upper limit of PID | These parameters are used to set the upper and lower limit of the PID adjustor output. | 100.0\% | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F09.10 | Output lower limit of PID | 100.0 \% corresponds to max. frequency or the max. voltage of (F04.31) <br> Setting range of F09.09:F09.10-100.0\% <br> Setting range of F09.10: -100.0\%-F09.09 | 0.0\% | $\bigcirc$ |
| F09.11 | Feedback offline detection value | Set the PID feedback offline detection value, when the detection value is smaller than or equal to the feedback offline detection value, and the lasting | 0.0\% | $\bigcirc$ |
| F09.12 | Feedback offline detection time | time exceeds the set value in F09.12, the VFD will report "PID feedback offline fault" and the keypad will display PIDE. <br> Setting range of F09.11: 0.0-100.0\% <br> Setting range of F09.12: 0.0-3600.0s | 1.0s | $\bigcirc$ |
| F09.13 | PID adjustment | 0x0000-0x1111 <br> LED ones: <br> 0 : Keep on integral adjustment when the frequency achieves the upper and low limit; the integration shows the change between the reference and the feedback unless it reaches the internal integral limit. When the trend between the reference and the feedback changes, it needs more time to offset the impact of continuous working and the integration will change with the trend. <br> 1: Stop integral adjustment when the frequency achieves the upper and low limit. If the integration keeps stable, and the trend between the reference and the feedback changes, the integration will change with the trend quickly. <br> LED tens: F 00.08 is 0 <br> 0 : The same with the setting direction; if the output of PID adjustment is different from the current | $0 \times 0001$ | $\bigcirc$ |


| Function <br> code | Name | Description | Default <br> value | Modify |
| :--- | :--- | :--- | :---: | :---: |
|  |  | running direction, the internal will output 0 <br> forcedly. <br> 1: Opposite to the setting direction <br> LED hundreds: F00.08 is 0 <br> 0: Limit to the maximum frequency <br> 1: Limit to frequency A <br> LED thousands: <br> 0: A+B frequency, the buffer of A frequency is <br> invalid <br> $1:$ A+B frequency, the buffer of A frequency is <br> valid <br> ACC/DEC is determined by ACC time 4 of F08.04. |  |  |
| F09.14 | Proportional <br> gain at low <br> frequency (Kp) | $0.00-100.00$ | 1.00 | 0 |
| F09.15 | PID command <br> of ACC/DEC <br> time | $0.0-1000.0$ s | 0.0 s | 0 |
| F09.16 | PID output filter <br> time | $0.000-10.000$ s | 0.000 s | 0 |

F10 Group Simple PLC and multi-step speed control

| Function <br> code | Name | Description | Default <br> value | Modify |
| :---: | :---: | :--- | :---: | :---: |
| F10.00 | Simple PLC | 0: Stop after running once. The VFD has to be <br> commanded again after finishing a cycle. <br> 1: Run at the final value after running once. After <br> finish a signal, the VFD will keep the running <br> frequency and direction of the last run. <br> 2: Cycle running. The VFD will keep on running <br> until receiving a stop command and then, the <br> system will stop. | 0 | 0 |
| F10.01 | Simple PLC <br> memory | 0: Power loss without memory <br> 1: Power loss memory; PLC record the running <br> step and frequency when power loss. | 0 | 0 |
| F10.02 | Multi-step <br> speed 0 | 100.0\% of the frequency setting corresponds to <br> the max. frequency F00.03. | $0.0 \%$ | $O$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F10.03 | Running time of step 0 | When selecting simple PLC running, set F10.02-F10.33 to define the running frequency and direction of all steps. <br> Note: The symbol of multi-step determines the running direction of simple PLC. The negative value means reverse rotation. <br> Multi-step speeds are in the range of $-\mathrm{f}_{\max }-\mathrm{f}_{\max }$ and it can be set continuously. <br> SG200 series VFDs can set 16 steps speed, selected by the combination of multi-step terminals $1-4$, corresponding to the speed 0 to speed 15. <br> When terminal1, terminal 2 , terminal 3 \& terminal $4=$ OFF, the frequency input manner is selected via Code F00.06 or F00.07. When all terminals aren't off, it runs at multi-step which takes precedence of keypad, analog value, high-speed pulse, PLC, communication frequency input. Select at most 16 steps speed via the combination code of terminal | 0.0s | $\bigcirc$ |
| F10.04 | Multi-step speed 1 |  | 0.0\% | $\bigcirc$ |
| F10.05 | Running time of step 1 |  | 0.0s | $\bigcirc$ |
| F10.06 | Multi-step speed 2 |  | 0.0\% | $\bigcirc$ |
| F10.07 | Running time of step 2 |  | 0.0s | $\bigcirc$ |
| F10.08 | Multi-step speed 3 |  | 0.0\% | $\bigcirc$ |
| F10.09 | Running time of step 3 |  | 0.0s | $\bigcirc$ |
| F10.10 | Multi-step speed 4 |  | 0.0\% | $\bigcirc$ |
| F10.11 | Running time of step 4 |  | 0.0s | $\bigcirc$ |
| F10.12 | Multi-step speed 5 |  | 0.0\% | $\bigcirc$ |
| F10.13 | Running time of step 5 |  | 0.0s | $\bigcirc$ |
| F10.14 | Multi-step speed 6 |  | 0.0\% | $\bigcirc$ |
| F10.15 | Running time of step 6 |  | 0.0s | $\bigcirc$ |
| F10.16 | Multi-step speed 7 |  | 0.0\% | $\bigcirc$ |
| F10.17 | Running time of step 7 |  | 0.0s | $\bigcirc$ |
| F10.18 | Multi-step speed 8 |  | 0.0\% | $\bigcirc$ |
| F10.19 | Running time of step 8 |  | 0.0s | $\bigcirc$ |
| F10.20 | Multi-step speed 9 |  | 0.0\% | $\bigcirc$ |
| F10.21 | Running time of step 9 |  | 0.0s | $\bigcirc$ |
| F10.22 | Multi-step speed 10 |  | 0.0\% | $\bigcirc$ |



| Function <br> code | Name | Description | Default <br> value | Modify |
| :---: | :--- | :--- | :---: | :---: |
|  |  | After the users select the corresponding <br> ACC/DEC time, the combined 16 binary bits will <br> change into decimal bit, and then set the <br> corresponding function codes. <br> Setting range: 0x0000-0xFFFF |  | 0 |
| F10.36 | PLC restart | Restart from the first step; stop during running <br> (cause by the stop command, fault or power loss), <br> run from the first step after restart. <br> 1: Continue to run from the stop frequency; stop <br> during running (cause by stop command and <br> fault), the VFD will record the running time <br> automatically, enter into the step after restart and <br> keep the remaining running at the setting <br> frequency. | 0 | 0 |
| F10.37 | Multi-step time <br> unit | 0: Seconds; the running time of all steps is <br> counted by second <br> 1: Minutes; the running time of all steps is counted <br> by minute | 0 | 0 |

## F11 Group Protective parameters

| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F11.00 | Phase loss protection | $0 \times 00-0 \times 11$ <br> LED ones: <br> 0 : Input phase loss protection disable <br> 1: Input phase loss protection enable <br> LED tens: <br> 0: Output phase loss protectiondisable <br> 1: Output phase loss protection enable <br> LED hundreds: <br> 0: Input phase loss hardware protection disable <br> 1: Input phase loss hardware protection enable | 110 | $\bigcirc$ |
| F11.01 | Sudden power loss frequency decrease | 0: Disable <br> 1: Enable | 0 | O |
| F11.02 | Frequency decrease ratio of sudden power loss | Setting range: $0.00 \mathrm{~Hz} / \mathrm{s}-\mathrm{F} 00.03$ (max. frequency) After the power loss of the grid, the bus voltage drops to the sudden frequency-decreasing point, the VFD begin to decrease the running frequency | $\begin{aligned} & 10.00 \\ & \mathrm{~Hz} / \mathrm{s} \end{aligned}$ | $\bigcirc$ |



| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Setting range of F 11.05 : <br> $0 \times 00-0 \times 11$ <br> LED ones: current limit <br> 0 : Invalid <br> 1: Always valid <br> LED tens: overload alarm <br> 0: Valid <br> 1: Invalid <br> Setting range of F11.06: 50.0-200.0\% <br> (corresponding to the rated output current of the <br> Setting range of $\mathrm{F} 11.07: 0.00-50.00 \mathrm{~Hz} / \mathrm{s}$ |  |  |
| F11.08 | Overload pre-alarm of the motor/VFD | The output current of the VFD or the motor is above F11.09 and the lasting time is beyond F11.10, overload pre-alarm will be output. | 0x000 | $\bigcirc$ |
| F11.09 | Overload pre-alarm test level |  | $\begin{gathered} \text { G type: } \\ 150 \% \\ \hline \text { P type: } \\ 120 \% \end{gathered}$ | $\bigcirc$ |
| F11.10 | Overload pre-alarm detection time | Setting range of F11.08: <br> Enable and define the overload pre-alarm of the VFD or the motor. <br> LED ones: <br> 0 : Overload pre-alarm of the motor, comply with the rated current of the motor <br> 1: Overload pre-alarm of the VFD, comply with the rated output current of the VFD | 0x0000 | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 2: VFD output torque overload/underload pre-alarm, corresponding to the rated motor torque <br> LED tens: <br> 0: The VFD continues to work after underload pre-alarm <br> 1: The VFD continues to work after underload pre-alarm and the VFD stops running after overload fault <br> 2: The VFD continues to work after overload pre-alarm and the VFD stops running after underload fault <br> 3. The VFD stops when overload or underload. LED hundreds : <br> 0 : Detection all the time <br> 1: Detection in constant running <br> LED thousands: Overload integral selection <br> 0 : Overload integral is invalid <br> 1: Overload integral is valid <br> Setting range of F11.08: 0000-1131 <br> Setting range of F11.09: F11. 11-200\% (relative value determined by the ones place of F 11.08 ) Setting range of P1 1. 10: 0.1-3600.0s |  |  |
| F11.11 | Detection level of underload pre-alarm | If the VFD current or the output current is lower Than F11.11, and its lasting time is beyond F11.12, the VFD will output underload pre-alarm. | 50\% | $\bigcirc$ |
| F11.12 | Detection time of underload pre-alarm | Setting range of F11.11: 0-F11.09(relative value determined by the ones place of F11.08) Setting range of F11.12: 0.1-3600.0s | 1.0s | $\bigcirc$ |
| F11.13 | Output terminal action during fault | Select the action of fault output terminals on undervoltage and fault reset. $0 \times 00-0 \times 11$ <br> LED ones: <br> 0 : Action under fault undervoltage <br> 1: No action under fault undervoltage <br> LED tens: <br> 0 : Action during the automatic reset <br> 1: No action during the automatic reset | $0 \times 00$ | $\bigcirc$ |


| Function <br> code | Name | Description | Default <br> value | Modify |
| :---: | :--- | :--- | :---: | :---: |
| F11.16 | Extension <br> functions <br> selection <br> LED ones: Voltage drop frequency-decreasing <br> selection <br> $0:$ Voltage drop frequency-decreasing selection <br> disable <br> $1:$ Voltage drop frequency-decreasing selection <br> enable <br> LED tens: Step 2 ACC/DEC time option <br> 0: Step 2 ACC/DEC time option disable <br> 1: Step 2 ACC/DEC time option enable , when <br> running frequency more than F08.36, ACC/DEC <br> time switch to step 2 ACC/DEC time | 00 | 0 |  |

F13 Group Enhanced function parameters

| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F13.13 | Braking current of short-circuit | When F01.00=0 during the starting of the VFD, set F13.14 to a non-zero value to enter the short circuit braking. <br> When the running frequency is lower than F01.09 during the stopping of the VFD, set F13.15 to a non-zero value to enter into stopping short circuited braking and then carry out the DC braking at the time set by F01.12 (refer to the instruction of F01.09-F01.12). <br> Setting range of F13.13: 0.0-150.0\% (of the rated output current of the VFD) <br> Setting range of F13.14: 0.00-50.00s <br> Setting range of F13.15: 0.00-50.00s | 0.0\% | $\bigcirc$ |
| F13.14 | Braking retention time before starting |  | 0.00s | $\bigcirc$ |
| F13.15 | Braking retention time when stopping |  | 0.00s | $\bigcirc$ |

F14 Group Serial communication

| Function <br> code | Name | Description | Default <br> value | Modify |
| :---: | :---: | :--- | :---: | :---: |
| F14.00 | Local <br> communication <br> address | The setting range: 1-247 <br> When the master is writing the frame,the <br> communication address of the slave is set to 0; | 1 | 0 |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
|  |  | the broadcast address is the communication addres All slaves on the MODBUS fieldbus can receive the frame, but the salve doesn't answer. The communication address of the drive is unique in the communication net. This is the fundamental for the point to point communication between the upper monitor and the drive. <br> Note: The address of the slave cannot set to 0 . | 1 | $\bigcirc$ |
| F14.01 | Communication baud ratio | Set the digital transmission speed between the upper monitor and the VFD. <br> 0 : 1200BPS <br> 1: 2400BPS <br> 2: 4800BPS <br> 3: 9600BPS <br> 4: 19200BPS <br> 5: 38400BPS <br> 6: 57600BPS <br> Note: The baud rate between the upper monitor and the VFD must be the same. Otherwise, the communication is not applied. The bigger the baud rate, the quicker the communication speed. | 4 | $\bigcirc$ |
| F14.02 | Digital bit checkout | The data format between the upper monitor and the VFD must be the same. Otherwise, the communication is not applied. <br> 0 : No check ( $\mathrm{N}, 8,1$ ) for RTU <br> 1: Even check $(E, 8,1)$ for RTU <br> 2: Odd check $(0,8,1)$ for RTU <br> 3: No check $(N, 8,2)$ for RTU <br> 4: Even check $(E, 8,2)$ for RTU <br> 5: Odd check $(0,8,2)$ for RTU <br> 6: No check ( $\mathrm{N}, 7,1$ ) for ASCII <br> 7: Even check $(E, 7,1)$ for ASCII <br> 8: Odd check $(0,7,1)$ for ASCII <br> 9: No check ( $\mathrm{N}, 7,2$ ) for ASCII <br> 10: Even check $(E, 7,2)$ for ASCII <br> 11: Odd check $(0,7,2)$ for ASCII <br> 12: No check $(N, 8,1)$ for ASCII <br> 13: Even check $(E, 8,1)$ for ASCII <br> 14: Odd check $(0,8,1)$ for ASCII <br> 15: No check $(N, 8,2)$ for ASCII <br> 16: Even check $(E, 8,2)$ for ASCII <br> 17: Odd check $(0,8,2)$ for ASCII | 1 | $\bigcirc$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F14.03 | Response delay | $0-200 \mathrm{~ms}$ <br> It means the interval time between the interval time when the drive receive the data and sent it to the upper monitor. If the answer delay is shorter than the system processing time, then the answer delay time is the system processing time, if the answer delay is longer than the system processing time, then after the system deal with the data, waits until achieving the answer delay time to send the data to the upper monitor. | 5 | $\bigcirc$ |
| F14.04 | Fault time of communication overtime | 0.0 (invalid), 0.1-60.0s <br> When the function code is set as 0.0 , the communication overtime parameter is invalid. When the function code is set as non-zero, if the interval time between two communications exceeds the communication overtime, the system will report "485 communication faults" (CE). Generally, set it as invalid; set the parameter in the continuous communication to monitor the communication state. | 0.0s | $\bigcirc$ |
| F14.05 | Transmission fault processing | 0 : Alarm and stop freely <br> 1: No alarm and continue to run <br> 2: No alarm and stop according to the stop means (only under the communication control) <br> 3: No alarm and stop according to the stop means (under all control modes) | 0 | $\bigcirc$ |
| F14.06 | Communication processing | LED ones place: <br> 0 : Operation with response: the drive will respond to all reading and writing commands of the upper monitor. <br> 1: Operation without response; The drive only responds to the reading command other than the writing command of the drive. The communication efficiency can be increased by this method. <br> LED tens place: <br> 0 : Communication encrypting invalid <br> 1: Communication encrypting valid <br> LED hundreds place, <br> 0: SG200 <br> 1: SG200 user-defined address | 0x00 | O |


| Function <br> code | Name | Description | Default <br> value | Modify |
| :--- | :--- | :--- | :--- | :--- |
| F14.07User-defined <br> address of <br> running <br> commands | Reserve |  |  |  |
| F14.08 | User-defined <br> address of <br> frequency <br> setting | Reserve |  |  |

F17 Group Monitoring function

| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F17.00 | Setting frequency | Display current set frequency of the VFD Range: $0.00 \mathrm{~Hz}-\mathrm{F} 00.03$ | / | $\bigcirc$ |
| F17.01 | Output frequency | Display current output frequency of the VFD Range: $0.00 \mathrm{~Hz}-\mathrm{F} 00.03$ | / | $\bigcirc$ |
| F17.02 | Ramp reference frequency | Display current ramp reference frequency of the VFD <br> Range: $0.00 \mathrm{~Hz}-\mathrm{F} 00.03$ | / | $\bigcirc$ |
| F17.03 | Output voltage | Display current output voltage of the VFD Range: 0-1200V | / | $\bigcirc$ |
| F17.04 | Output current | Display current output current of the VFD Range: 0.0-3000.0A | 1 | $\bigcirc$ |
| F17.05 | Motor speed | Display the rotation speed of the motor. Range: 0-65535RPM | / | $\bigcirc$ |
| F17.08 | Motor power | Display current motor power <br> Range: -300-300\% | / | $\bigcirc$ |
| F17.09 | Output torque | Display the current output torque of the VFD. Range: -250.0-250.0\% | / | $\bigcirc$ |


| Function code | Name | Description |  |  |  |  | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F17.10 | Evaluated <br> motor <br> frequency | Evaluated frequency of motor rotor Range: 0.00 Hz - F00.03 |  |  |  |  | 1 | $\bullet$ |
| F17. 11 | DC bus voltage | Display current DC bus voltage of the VFD <br> Range: 0.0-2000.0V |  |  |  |  | 1 | $\bullet$ |
| F17.12 | ON-OFF input terminals state | Display current Switch input terminals state of the VFD <br> Range: 0000-00FF |  |  |  |  | 1 | $\bullet$ |
|  |  |  | BIT8 | BIT7 | BIT6 | BIT5 |  |  |
|  |  |  | HDI | DI8 | DI7 | DI6 |  |  |
|  |  | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |  |  |
|  |  | DI5 | DI4 | DI3 | DI2 | DI1 |  |  |
| F17.13 | ON-OFF output terminals state | Display current Switch output terminals state of the VFD |  |  |  |  | 1 | $\bullet$ |
|  |  | BIT3 | BIT |  |  | BITO |  |  |
|  |  | RO2 | RO1 |  |  | Y |  |  |
|  |  | Range: 0000-000F |  |  |  |  |  |  |
| F17.14 | Digital adjustment | Display the adjustment through the keypad of the VFD. <br> Range : $0.00 \mathrm{~Hz}-\mathrm{F} 00.03$ |  |  |  |  | 1 | $\bullet$ |
| F17.15 | Torque reference | Display the torque given, the percentage to the current rated torque of the motor. <br> Setting range: -300.0\%-300.0\% <br> (motor rated current) |  |  |  |  | 1 | $\bullet$ |
| F17.16 | Linear speed | Display the current linear speed of the VFD. <br> Range: 0-65535 |  |  |  |  | 1 | $\bullet$ |
| F17.17 | Length | Display the current length of the VFD. <br> Range: 0-65535 |  |  |  |  | 1 | $\bullet$ |
| F17.18 | Counting value | Display the current counting number of the VFD. <br> Range: 0-65535 |  |  |  |  | 1 | $\bullet$ |
| F17.19 | Al1 input voltage | It is implemented through the analog potentiometer on the keypad for the 0018 and lower models; not available for the and higher models. <br> Display analog Al1 input signal <br> Range: $0.00-10.00 \mathrm{~V}$ |  |  |  |  | 1 | $\bullet$ |
| F17.20 | Al2 input voltage | Display analog AI2 input signal <br> Range: $0.00-10.00 \mathrm{~V}$ |  |  |  |  | 1 | $\bullet$ |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
| F17.21 | Al3 input voltage | Display analog Al2 input signal <br> Range: - $10.00-10.00 \mathrm{~V}$ | 1 | $\bullet$ |
| F17.22 | HDI input frequency | Display HDI input frequency <br> Range: $0.000-50.000 \mathrm{kHz}$ | 1 | $\bullet$ |
| F17.23 | PID reference value | Display PID reference value <br> Range: -100.0-100.0\% | 1 | $\bullet$ |
| F17.24 | PID feedback value | Display PID response value <br> Range: -100.0-100.0\% | 1 | $\bullet$ |
| F17.25 | Power factor of the motor | Display the current power factor of the motor. <br> Range: -1.00-1.00 | 1 | $\bullet$ |
| F17.26 | Current running time | Display the current running time of the VFD. <br> Range: 0-65535min | 1 | - |
| F17.27 | Simple PLC and the current step of multi-step speed | Display simple PLC and the current step of the multi-step speed <br> Range: 0-15 | 1 | $\bullet$ |
| F17.35 | AC input current | Display the input current in AC side. <br> Range: 0.0-5000.0A | 1 | $\bullet$ |
| F17.36 | Output torque | Display the output torque. Positive value is in the electromotion state, and negative is in the power generating state. <br> Range: $-3000.0 \mathrm{Nm}-3000.0 \mathrm{Nm}$ | 1 | $\bullet$ |
| F17.37 | Counting of the motor overload | 0-100 (100 is OL1 fault) | 1 | $\bullet$ |
| F17.38 | PID output | -100.00-100.00\% | 0.00\% | - |
| F17.39 | Wrong download of parameters | 0.00-99.99 | 0.00 | $\bullet$ |

## F24 Group Water supply

| Function <br> code | Name | Description | Default <br> value | Modify |
| :---: | :---: | :--- | :---: | :---: |
| F24.00 | Water supply <br> selection | 0: Disabled <br> 1: Enabled | 0 | 0 |
| F24.01 | Press feedback <br> source | 0: Al1 setting value (implemented through the <br> analog potentiometer on the keypad for the <br> 0018 and lower models; not available for | 0 | 0 |


| Function code | Name | Description | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: |
|  |  | the 0022 and higher models.) <br> 1: Al2 setting value <br> 2: Al3 setting value <br> 3: HDI setting value |  |  |
| F24.02 | Hibernation check | 0 : Hibernate as the setting frequency < F 24.03 <br> 1: Hibernate as the feedback pressure $>$ F24.04 | 0 | $\bigcirc$ |
| F24.03 | $\qquad$ | 0.00-F00.03(the max. frequency) | 10.00 Hz | $\bigcirc$ |
| F24.04 | Starting pressure of hibernation | 0.00-100.0\% | 50.0\% | O |
| F24.05 | Hibernation delay time | 0.0-3600.0s | 5.0s | $\bigcirc$ |
| F24.06 | Hibernation awake | 0 : Awake as the setting frequency >F24.07 <br> 1: Awake as the feedback pressure $\langle\mathrm{F} 24.08$ | 0 | $\bigcirc$ |
| F24.07 | Awake frequency | 0.00-F00.03(the max. frequency) | $\begin{gathered} 20.00 \\ \mathrm{~Hz} \end{gathered}$ | $\bigcirc$ |
| F24.08 | Setting value of hibernation awake | 0.00-100.0\% | 10.0\% | $\bigcirc$ |
| F24.09 | Min. <br> hibernation time | 0.0-3600.0s | 5.0s | $\bigcirc$ |
| F24.10 | Valid auxiliary motor | F24.10-F24.12can make three motors to form a simple system of water supply. | 0 | O |
| F24. 11 | Start/stop delay time of auxiliary motor 1 | Output trequency <br> of the motor | 5.0s | O |
| F24.12 | Start/stop delay time of auxiliary motor 2 |  | 5.0s | $\bigcirc$ |


| Function <br> code | Name | Description | Default <br> value | Modify |
| :--- | :--- | :--- | :--- | :--- |
|  |  | F24.10 is used to select the valid auxiliary motor. <br> $0:$ No auxiliary motor <br> $1:$ Auxiliary motor 1 valid <br> $2:$ Auxiliary motor 2 valid <br> $3:$ Auxiliary motor 1 and 2 valid <br> Setting range of F24.11: 0.0-3600.0s <br> Setting range of F24.12: 0.0-3600.0s |  |  |
|  |  |  |  |  |

## 7 Basic operation instruction

### 7.1 What this chapter contains

This chapter describes the internal function mode of the VFD in details.


- Check all terminals are connected properly and tightly.
- Check that the power of the motor corresponds to that of the VFD.


### 7.2 First powering on

## Check before powering on

Please check according to the installation list in chapter two.

## Original powering operation

Check to ensure there is no mistake in wiring and power supply, switch on the air switch of the AC power supply on the input side of the VFD to power on the VFD. 8.8.8.8.8. will be displayed on the keypad, and the contactor closes normally. When the character on the nixie tubs changes to the set frequency, the VFD has finished the initialization and it is in the stand-by state.


LED displays "8.8.8.8.8" Standby state and 7 LEDs are on

Below diagram shows the first operation: (take motor 1 as the example)


Note: If fault occurs, please do as the "Fault Tracking". Estimate the fault reason and settle the issue.

Besides F00.01 and F00.02, terminal command setting can also be used to set the running command channel.

| Current running command channel F00.01 | Multi-function <br> terminal 36 <br> Shifting the command to keypad | Multi-function terminal 37 Shifting the command to communication | Multi-function terminal $38$ <br> Shifting the command to communication |
| :---: | :---: | :---: | :---: |
| Keypad running command channel | 1 | Terminal running command channel | Communication running command channel |
| Terminal running command channel | Keypad running command channel | 1 | Communication running command channel |
| Communication running command channel | Keypad running command channel | Terminal running command channel | 1 |

Note: " $/$ " means the multi-function terminal is invalid on the current reference channel.

### 7.3 Vector control

Because asynchronous motors have the characteristics of high stage, nonlinear, strong coupling and various variables, the actual control of the asynchronous motor is very difficult. Vector control is mainly used to settle this problem with the theme of that divide the stator current vector into exciting current (the current heft generating internal magnetic field of the motor) and torque current (the current heft generating torque) by controlling and measuring the stator current vector according to the principles of beamed magnetic field to control the range and phase of these two hefts. This method can realize the decoupling of exciting current and torque current to adjust the high performance of asynchronous motors.

SG200 series VFDs are embedded speed sensor-less vector control calculation. Because the core calculation of vector control is based on exact motor parameter models, the accuracy of motor parameter will impact on the performance of vector control. It is recommended to input the motor parameters and carry out autotune before vector running.

Because the vector control calculation is very complicated, high technical theory is needed for the user during internal autotune. It is recommended to use the specific function parameters in vector control with cautions.


### 7.4 Torque control

SG200 series VFDs support two kinds of control mode: torque control and rotation speed control. The core of rotation speed is that the whole control focuses on the stable speed and ensures the setting speed is the same as the actual running speed. The max. load should be in the range of the torque limit. The core of torque control is that the whole control focus on the stable torque and ensures the setting torque is the same as the actual output torque. At the same time, the output frequency is among the upper limit or the lower limit.


### 7.5 Parameters of the motor

| - Physical accident may occur if the motor starts up suddenly during auto- |
| :--- | :--- |
| tune. Please check the safety of surrounding environment of the motor and |
| the load before auto-tune. |
| The power is still applied even the motor stops running during static auto- |
| tune. Please do not touch the motor until the auto-tune is completed, |
| otherwise there would be electric shock. |



The control performance of the VFD is based on the established accurate motor model. The user has to carry out the motor auto-tune before first running (take motor 1 as the example).

## Note:

1. Set the motor parameters according to the nameplate of the motor.
2. During the motor auto-tune, de-couple the motor form the load if rotation auto-tune is selected to make the motor is in a static and empty state, otherwise the result of auto-tune is incorrect. The asynchronous motors can auto-tune the parameters of F02.06-F02. 10.
3. During the motor auto-tune 1, do not to de-couple the motor form the load if static auto-tune is selected. Because only some parameters of the motor are involved, the control performance is not as better as the rotation auto-tune. The asynchronous motors can auto-tune the parameters of F02.06 - F02. 10.
4. During the motor auto-tune 2, do not to de-couple the motor form the load if static auto-tune is selected. Because only some parameters of the motor are involved, the control performance is not as better as the rotation auto-tune. The asynchronous motors can auto-tune the parameters of F02.06-F02.08. It is suitable in the cases which SVPWM control is applied.

### 7.6 Start and stop control

The start and stop control of the VFD includes three states: start after the running command during normal powering on, start after the restarting function becomes valid during normal powering on and start after the automatic fault reset. Below is the detailed instruction for three starting.

There are three starting modes for the VFD: start from the starting frequency directly, start after the DC braking and start after the rotation speed tracking. The user can select according to different situations to meet their needs.

For the load with big inertia, especially in the cases where the reverse rotation may occur, it is better to select starting after DC braking and then starting after rotation speed tracking.

1. The starting logic figure of starting after the running command during the normal powering on:

2. The starting logic figure of starting after the restarting function becomes valid during the normal powering on:

3. The starting logic figure of starting after the automatic fault reset:


### 7.7 Frequency setting

SG200 series VFDs can set the frequency by various means. The reference channel can be divided into main reference channel and assistant reference channel.

There are two main reference channels: A frequency reference channel and B frequency reference channel. These two reference channels can carry out mutual simple math calculation between each other. And the reference channels can be shifted dynamically through set multi- function terminals.

There are three assistant reference channels: keypad UP/DOWN input, terminals UP/DOWN switch input and digital potentiometer input. The three ways equal to the effect of input UP/DOWN reference in internal assistant reference of the VFD. The user can enable the reference method and the effect of the method to the frequency reference by setting function codes.

The actual reference of the VFD is consisted of main reference channel and assistant reference channel.


SG200 series VFDs support the shifting between different reference channels and the detailed shifting rules is as below:
\(\left.$$
\begin{array}{|c|c|c|c|}\hline \text { Current } & \begin{array}{c}\text { Multi-function } \\
\text { reference } \\
\text { channel } \\
\text { F00.09 }\end{array} & \begin{array}{c}\text { Shifting from A } \\
\text { channel to B channel }\end{array} & \begin{array}{c}\text { Multi-function } \\
\text { terminal function 14 } \\
\text { Shifting from } \\
\text { combination setting } \\
\text { to A channel }\end{array}\end{array}
$$ \begin{array}{c}Multi-function terminal <br>
function 15 <br>
Shifting from <br>
combination setting to <br>

B channel\end{array}\right]\)| $/$ |
| :---: |
| A |
| B |

Note: "/" means the multi-function terminal is invalid under the current reference channel.
When multi-function terminals UP (10) and DOWN (11) are used to set the internal assistant frequency, F08.45 and F08.46 can be set to increase or decrease the set frequency quickly.


### 7.8 Simple PLC

Simple PLC function is also a multi-step speed generator. The VFD can change the running frequency, direction to meet the need of processing according to the running time automatically. In the past, this function needs to be assisted by external PLC, but now the VFD can realize this function by itself.

The series VFDs can control 16-step speed with 4 groups of ACC/DEC time.
The multi-function digital output terminals or multi-function relay output an ON signal when the set PLC finishes a circle (or a step).


### 7.9 Multi-step speed running

Set the parameters when the VFD carries out multi-step speed running. SG200 series VFDs can set 16 step speed which can be selected by the combination code of multi-step speed terminals 14. They correspond to multi-step speed 0 to 15 .


### 7.10 PID control

PID control is commonly used to control the procedure. Adjust the output frequency by proportional, integral, differential operation with the dispersion of the target signals to stabilize the value on the target. It is possible to apply to the flow, pressure and temperature control. Figure of basic control is as below:


When F00.06, F00. $07=7$ or $F 04.27=6$, the running mode of the VFD is procedure PID control.

### 7.10.1 General steps of PID parameters setting:

## a Ensure the gain $P$

When ensure the gain P , firstly cancel the PID integration and derivation (set $\mathrm{Ti}=0$ and $\mathrm{Td}=0$, see the PID parameter setting for detailed information) to make proportional adjustment is the only method to PID. Set the input as $60 \%-70 \%$ of the permitted max. value and increase gain $P$ from 0 until the system vibration occurs, vice versa, and record the PID value and set it to $60 \%-70 \%$ of the current value. Then the gain $P$ commission is finished.

## b Ensure the integration time

After ensuring the gain $P$, set an original value of a bigger integration time and decrease it until the system vibration occurs, vice versa, until the system vibration disappear. Record the Ti and set the integration time to $150 \%-180 \%$ of the current value. Then integration time commission is finished.

## c Ensure the derivation time

Generally, it is not necessary to set Td which is 0 .
If it needs to be set, set it to $30 \%$ of the value without vibration via the same method with P and Ti .
d Commission the system with and without load and then adjust the PID parameter until it is available.

### 7.10.2 PID inching

After setting the PID control parameters, inching is possible by following means:

## Control the overshoot

Shorten the derivation time and prolong the integration time when overshoot occurs.


## Achieve the stable state as soon as possible

Shorten the integration time ( Ti ) and prolong the derivation time $(\mathrm{Td})$ even the overshoot occurs, but the control should be stable as soon as possible.


## Control long vibration

If the vibration periods are longer than the set value of integration time (Ti), it is necessary to prolong the integration time $(\mathrm{Ti})$ to control the vibration for the strong integration.


## Control short vibration

Short vibration period and the same set value with the derivation time (Td) mean that the derivation time is strong. Shortening the derivation time (Td) can control the vibration. When setting the derivation time as 0.00 (ire no derivation control) is useless to control the vibration, decrease the gain.


### 7.11 Pulse counter

SG200 series VFDs support pulse counter which can input counting pulse through HDI terminal. When the actual length is longer than or equal to the set length, the digital output terminal can output length arrival pulse signal and the corresponding length will be cleared automatically.


## 8 Fault tracking

### 8.1 What this chapter contains

This chapter describes how to reset faults and view fault history. It also lists all alarm and fault messages including the possible cause and corrective actions.


- Only qualified electricians are allowed to maintain the VFD. Read the safety instructions in chapter Safety precautions before working on the VFD.


### 8.2 Alarm and fault indications

Fault is indicated by LEDs. See5Keypad operation procedure. When TRIP]light is on, an alarm or fault message on the panel display indicates abnormal VFD state. Using the information reference in this chapter, most alarm and fault cause can be identified and corrected. If not, contact SGT office..

### 8.3 How to reset

The VFD can be reset by pressing the keypad key STOP/RST, through digital input, or by switching the power light. When the fault has been removed, the motor can be restarted.

### 8.4 Fault history

Function codes F07.27-F07.32 store 6 recent faults. Function codes F07.33 - F07.40, F07.41 F07.48 and F07.49-F07.56 show drive operation data when the latest 3 faults occurs.

### 8.5 Fault instruction and solution

Do as the following after the VFD fault:

1. Check to ensure there is nothing wrong with the keypad. If not, please contact local SGT office.
2. If there is nothing wrong, please check F07 and ensure the corresponding recorded fault parameters to confirm the real state when the current fault occurs by all parameters.
3. See the following table for detailed solution and check the corresponding abnormal state.
4. Eliminate the fault and ask for relative help.
5. Check to eliminate the fault and carry out fault reset to run the VFD.

### 8.5.1 Fault instruction and solution

Note: The numbers enclosed in square brackets such as [1], [2] and [3] in the Fault type column in the following table indicate the VFD fault type codes read through communication.

| Fault code | Fault type | Possible cause | What to do |
| :---: | :---: | :---: | :--- |
| OUt1 | [1] IGBT Ph-U fault | $\bullet$ The acceleration is too | $\bullet$ Increase acceleration |
| OUt2 | $[2]$ IGBT Ph-V fault | fast $\bullet$ IGBT module fault |  |
| time $\bullet$ Change the power |  |  |  |
| unit •Check the driving |  |  |  |
| wires |  |  |  |


| Fault code | Fault type | Possible cause | What to do |
| :---: | :---: | :---: | :---: |
|  |  | interference <br> - The connection of the driving wires is not good, <br> -Grounding is not properly | - Inspect external equipment and eliminate interference |
| OC1 | [7] Over-current when acceleration | -The acceleration or deceleration is too fast <br> - The voltage of the grid is too low <br> - The power of the VFD is too low <br> - The load transients or is abnormal <br> -The grounding is short circuited or the output is phase loss <br> - There is strong external interference -The overvoltage stall protection is not open | - Increase the ACC time <br> - Check the input power <br> - Select the VFD with a larger power <br> - Check if the load is short circuited (the grounding short circuited or the wire short circuited) or the rotation is not smooth <br> - Check the output configuration. <br> - Check if there is strong interference <br> - Check the setting of relative function codes |
| OC2 | [8] Over-current when deceleration |  |  |
| OC3 | [9] Over-current when constant speed running |  |  |
| OV1 | [4] Over-voltage when acceleration | - The input voltage is abnormal <br> - There is large energy feedback <br> - No braking components <br> - Braking energy is not open | - Check the input power <br> - Check if the DEC time of the load is too short or the VFD starts during the rotation of the motor or it needs to add the dynamic braking components <br> - Install the braking components <br> - Check the setting of relative function codes |
| OV2 | [5] Over-voltage when deceleration |  |  |
| OV3 | [6] Over-voltage when constant speed running |  |  |
| UV | [10] DC bus Under-voltage | -The voltage of the power supply is too low -The overvoltage stall protection is not open | - Check the input power of the supply line <br> $\bullet$ Check the setting of relative function codes |
| OL1 | [11] Motor overload | -The voltage of the power supply is too low <br> -The motor setting rated current is incorrect <br> -The motor stall or load transients is too strong | - Check the power of the supply line <br> - Reset the rated current of the motor <br> - Check the load and adjust the torque lift |


| Fault code | Fault type | Possible cause | What to do |
| :---: | :---: | :---: | :---: |
| OL2 | [12] VFD overload | -The acceleration is too fast $\bullet$ Reset the rotating motor - The voltage of the power supply is too low <br> -The load is too heavy <br> -The motor power is too small | - Increase the ACC time <br> - Avoid the restarting after stopping <br> - Check the power of the supply line <br> - Select a VFD with bigger power <br> - Select a proper motor |
| SPI | [13] Input phase loss | -Phase loss or fluctuation of input R,S,T | - Check input power <br> - Check installation distribution |
| SPO | [14] Output phase loss | $\bullet$ U,V,W phase loss input(or serious asymmetrical three phase of the load) | - Check the output distribution <br> - Check the motor and cable |
| OH1 | [15] Rectify overheat | - Air duct jam or fan damage -Ambient | - Clean the air duct or the |
| OH2 | [16] IGBT overheat | temperature is too high <br> - The time of overload running is too long | fan $\bullet$ Reduce the ambient temperature |
| EF | [17] External fault | $\bullet$ DI external fault input terminals action | - Check the external device input |
| CE | $\begin{gathered} \text { [18] } \\ \text { Communication } \\ \text { error } \end{gathered}$ | - The baud rate setting is incorrect <br> -Fault occurs to the communication wiring. <br> - The communication address is wrong <br> - There is strong interference to the communication | - Set proper baud rate <br> - Check the communication connection distribution <br> - Set proper communication address <br> - Chang or replace the connection distribution or improve the anti-interference capability |
| ItE | [19] Current detection fault | - The connection of the control board is not good <br> - Hall components is <br> broken -The modifying <br> circuit is abnormal | - Check the connector and re-plug <br> - Change the hall <br> - Change the main control panel |
| tE | [20] Autotuning fault | -The motor capacity does not comply with the VFD capability <br> -The rated parameter of the | - Change the VFD model - Set the rated parameter according to the motor nameplate |


| Fault code | Fault type | Possible cause | What to do |
| :---: | :---: | :---: | :---: |
|  |  | motor does not set correctly. <br> -The offset between the parameters auto-tuning and the standard parameter is huge <br> - Auto-tune overtime | - Empty the motor load and re-identify <br> - Check the motor connection and set the parameter. <br> - Check if the upper limit frequency is above $2 / 3$ of the rated frequency. |
| EEP | [21] EEPROM fault | - Error of controlling the write and read of the parameters <br> - Damage to EEPROM | - Press to reset <br> STOP/RST <br> SThange the main  <br> panel  |
| PIDE | [22] PID feedback fault | -PID feedback offline <br> -PID feedback source disappear | - Check the PID feedback signal - Check the PID feedback source |
| bCE | [23] Braking unit fault | - Braking circuit fault or damage to the braking pipes <br> -The external braking resistor is not sufficient | - Check the braking unit and change new braking pipe - Increase the braking resistor |
| END | [24] Time reach of factory setting | -The actual running time of the VFD is above the internal setting running time | - Ask for the supplier and adjust the setting running time |
| OL3 | [25] Electrical overload | -The VFD will report overload pre-alarm according to the set value | - Check the load and the overload pre-alarm point. |
| PCE | [26] Keypad communication fault | - The connection of the keypad wires is not good or broken <br> -The keypad wire is too long and affected by strong interference <br> - There is circuit fault on the communication of the keypad and main board | - Check the keypad wires and ensure whether there is mistake <br> - Check the environment and avoid the interference source - Change the hardware and ask for service |
| UPE | [27] Parameter uploading fault | -The keypad is not in good connection or offline; <br> -The keypad cable is too long and there is strong interference; | - Check the environment and eliminate the interference source; <br> - Change hardware and ask for maintenance service; |


| Fault code | Fault type | Possible cause | What to do |
| :---: | :---: | :--- | :--- |
|  |  | -Part of the communication <br> circuits of the keypad or main <br> board have fault. | $\bullet$ Change hardware and <br> ask for maintenance <br> service. |
| DNE | [28] Parameter <br> downloading fault <br> (DNE) | -The keypad is not in <br> good connection or offline; <br> -The keypad cable is too <br> long and there is strong <br> interference; <br> -Data storage error in <br> keypad. | $\bullet$ Check the environment <br> and eliminate the <br> interference source; <br> $\bullet$ Change hardware and ask <br> for maintenance service; <br> $\bullet$ Back up data in the |
| keypad again. |  |  |  |

8.5.2 Other states

| Fault code | Fault type | Possible cause | What to do |
| :---: | :--- | :--- | :--- |
| PoFF | System power off | System power off or the <br> bus voltage is too low | Check the grid |
|  | Communication failure between <br> the keypad and main control board | lhe keypad is not <br> connected correctly | Check the installation <br> environment |

### 8.6 Common fault analysis

### 8.6.1 The motor does not work



### 8.6.2 Motor vibration



### 8.6.3 OvervoItage



### 8.6.4 Undervoltage fault



### 8.6.5 Abnormal motor heat



### 8.6.6 VFD overheating



### 8.6.7 Stall during the acceleration of the motor



### 8.6.8 Overcurrent



### 8.7 VFD system interference troubleshooting

If sensitive devices (PLC, PC, sensors, test equipment, etc.) exist interference problems when the system is running, you can troubleshoot by the following means:

1. Try plugging in or unplugging the jumper pins of C 3 filter to verify whether the interference has been eliminated.
2. Check whether the drive power lines and the signal/ communication lines of sensitive equipment go down the same trough, if there is, it should be again separated from the wiring.
3. If the sensitive equipment and drive to take power from the same grid, it is recommended to install isolation transformer and filter to the distribution of sensitive equipment side.
4. The relative shield wire of sensitive equipment try to ground at both ends , single-grounded ungrounded respectively; to verify whether the interference has been eliminated.
5. Try to make the interfered sensitive equipment and the drive have no common ground, or floating processing; to verify whether the interference has been eliminated.

### 8.8 Maintenance and hardware diagnostics

### 8.8.1 Overcurrent

If installed in an appropriate environment, the VFD requires very little maintenance. The table lists the recommended routine maintenance intervals recommended by SGT.

| Checking part |  | Checking item | Checking method | Criterion |
| :---: | :---: | :---: | :---: | :---: |
| Ambient environment |  | Check the ambient temperature, humidity and vibration and ensure there is no dust, gas, oil fog and water drop. | Visual examination and instrument test | Conforming to the manual |
|  |  | Ensure there are no tools or other foreign or dangerous objects | Visual examination | There are no tools or dangerous objects. |
| Voltage |  | Ensure the main circuit and control circuit are normal. | Measurement by millimeter | Conforming to the manual |
| Keypad |  | Ensure the display is clear enough | Visual examination | The characters are displayed normally. |
|  |  | Ensure the characters are displayed totally | Visual examination | Conforming to the manual |
| Main circuit | For public use | Ensure the screws are tightened up | Tighten up | NA |
|  |  | Ensure there is no distortion, crackles, damage or color-changing caused by overheating and aging to the machine and insulator. | Visual examination | NA |
|  |  | Ensure there is no dust and dirtiness | Visual examination | NA <br> Note: If the color of the copper blocks change, it does not mean that there is something wrong with the features. |
|  | The lead of the conductors | Ensure that there is no distortion or color-changing of the conductors caused by overheating. | Visual examination | NA |
|  |  | Ensure that there are no crackles or color-changing of the protective layers. | Visual examination | NA |



| Checking part |  | Checking item | Checking method | Criterion |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Ensure there is no weeping and distortion to the capacitors. | Visual examination or estimate the usage time according to the maintenance information | NA |
| Cooling system | Cooling fan | Estimate whether there is abnormal noise and vibration. | Hearing and Visual examination or rotate with hand | Stable rotation |
|  |  | Estimate there is no losses screw. | Tighten up | NA |
|  |  | Ensure there is no color-changing caused by overheating. | Visual examination or estimate the usage time according to the maintenance information | NA |
|  | Ventilating duct | Ensure whether there is stuff or foreign objection in the cooling fan, air vent. | Visual examination | NA |

Consult the local service representative for more details on the maintenance.

### 8.8.2 Cooling fan

The VFD's cooling fan has a minimum life span of 25,000 operating hours. The actual life span depends on the VFD usage and ambient temperature.

The operating hours can be found through F07. 14 (accumulative hours of the VFD).
Fan failure can be predicted by the increasing noise from the fan bearings. If the VFD is operated in a critical part of a process, fan replacement is recommended once these symptoms appear. Replacement fans are available from SGT.

### 8.8.2.1 Replacing the cooling fan

- Read and follow the instructions in chapter1 Safety precautions. Ignoring the instructions would cause physical injury or death, or damage to the equipment.

1. Stop the VFD and disconnect it from the AC power source and wait for at least the time designated on the VFD.
2. Lever the fan holder off the drive frame with a screwdriver and lift the hinged fan holder slightly upward from its front edge.
3. Loose the fan cable from the clip.
4. Disconnect the fan cable.
5. Remove the fan holder from the hinges.
6. Install the new fan holder including the fan in reverse order. Keep the wind direction of the fan consistent with that of the VFD, as shown below:


Figure 8-1 Fan maintenance diagram for VFDs
7. Restore power.

### 8.8.3 Capacitors

### 8.8.3.1 Reforming the capacitors

The DC bus capacitors must be reformed according to the operation instruction if the VFD has been stored for a long time. The storing time is counted form the producing date other than the delivery data which has been marked in the serial number of the VFD.

| Time | Operational principle |
| :---: | :--- |
| Storing time less than 1 year | Operation without charging |
| Storing time 1-2 years | Connect with the power for 1 hour before first ON command |
|  | Use power surge to charge for the VFD <br> Storing time 2-3 years <br>  <br>  <br>  <br>  <br>  <br>  <br> - Apply $25 \%$ rated voltage for 30 minutes <br> - Apply $50 \%$ rated voltage for 30 minutes <br>  <br> - Apply $100 \%$ rated voltage for 30 minutes |
| Use power surge to charge for 30 minutes the VFD |  |
| Storing time more than 3 years | - Apply $25 \%$ rated voltage for 2 hours |
|  | - Apply $50 \%$ rated voltage for 2 hours |
|  | - Apply $75 \%$ rated voltage for 2 hours |
|  | - Apply $100 \%$ rated voltage for 2 hours |

The method of using power surge to charge for the VFD:
The right selection of power surge depends on the supply power of the VFD. Single phase 220 V AC/2A power surge applied to the VFD with single/three-phase 220 V AC as its input voltage. The VFD with single/three-phase 220V AC as its input voltage can apply Single phase 220V AC/2A power surge. All DC bus capacitors charge at the same time because there is one rectifier.

High-voltage VFD needs enough voltage (for example, 380V) during charging. The small capacitor power ( 2 A is enough) can be used because the capacitor nearly does not need current when charging.

The operation method of VFD charging through resistors (LEDs):
The charging time is at least 60 minutes if charge the DC bus capacitor directly through supply power. This operation is available on normal temperature and no-load condition and the resistor should be serially connected in the 3 -phase circuits of the power supply(the distance between resistors of each phase $\geq 5.5 \mathrm{~mm}$ ):

380 V drive device: $1 \mathrm{k} / 100 \mathrm{~W}$ resistor. LED of 100 W can be used when the power voltage is no more than 380 V . But if used, the light may be off or weak during charging.


Figure 8-2 380V charging illustration of the driven device

### 8.8.3.2 Change electrolytic capacitors



- Read and follow the instructions in chapter1Safety precautions. Ignoring the instructions may cause physical injury or death, or damage to the equipment.

Change electrolytic capacitors if the working hours of electrolytic capacitors in the VFD are above 35000. Please contact the local SGT.

### 8.8.4 Power cable

| - Read and follow the instructions in chapter1Safety precautions. Ignoring the |
| :--- | :--- | :--- |
| instructions may cause physical injury or death, or damage to the equipment. |

1. Stop the drive and disconnect it from the power line. Wait for at least the time designated on the VFD.
2. Check the tightness of the power cable connections.
3. Restore power.

## 9 Communication protocol

### 9.1 What this chapter contains

This chapter describes the communication protocol of SG200 series VFDs.
The SG200 series VFDs provide RS485 communication interface. It adopts international standard MODBUS communication protocol to perform master-slave communication. The user can realize centralized control through PC/PLC, upper control PC, etc. (set the control command, running frequency of the VFD, modify relevant function codes, monitor and control the operating state and fault information of the VFD and so on) to adapt specific application requirements.

### 9.2 Brief instruction to MODBUS protocol

MODBUS protocol is a software protocol and common language which is applied in the electrical controller. With this protocol, the controller can communicate with other devices via network (the channel of signal transmission or the physical layer, such as RS485). And with this industrial standard, the controlling devices of different manufacturers can be connected to an industrial network for the convenient of being monitored.

There are two transmission modes for MODBUS protocol: ASCII mode and RTU (Remote Terminal Units) mode. On one MODBUS network, all devices should select same transmission mode and their basic parameters, such as baud rate, digital bit, check bit, and stopping bit should have no difference.

MODBUS network is a controlling network with single-master and multiple slaves, which means that there is only one device performs as the master and the others are the slaves on one MODBUS network. The master means the device which has active talking right to send message to MODBUS network for the controlling and inquiring to other devices. The slave means the passive device which sends data message to the MODBUS network only after receiving the controlling or inquiring message (command) form the master (response). After the master sends message, there is a period of time left for the controlled or inquired slaves to response, which ensure there is only one slave sends message to the master at a time for the avoidance of singles impact.

Generally, the user can set PC, PLC, IPC and HMI as the masters to realize central control. Setting certain device as the master is a promise other than setting by a bottom or a switch or the device has a special message format. For example, when the upper monitor is running, if the operator clicks sending command bottom, the upper monitor can send command message actively even it cannot receive the message from other devices. In this case, the upper monitor is the master. And if the designer makes the VFD send the data only after receiving the command, then the VFD is the slave.

The master can communicate with any single slave or with all slaves. For the single-visiting command, the slave should feedback a response message; for the broadcasting message from the master, the slave does not need to feedback the response message.

### 9.3 Application of the VFD

The MODBUS protocol of the VFD is RTU mode and the physical layer is 2-wire RS485.

### 9.3.1 RS485

The interface of 2-wire RS485 works on semiduplex and its data signal applies differential transmission which is called balance transmission, too. It uses twisted pairs, one of which is defined as $A(+)$ and the other is defined as $B(-)$. Generally, if the positive electrical level between sending drive $A$ and $B$ is among $+2-+6 \mathrm{~V}$, it is logic" 1 ", if the electrical level is among $-2 \mathrm{~V}-6 \mathrm{~V}$; it is logic" 0 ".
$485+$ on the terminal board corresponds to $A$ and 485- to B.
Communication baud rate means the binary bit number in one second. The unit is bit/s (bps). The higher the baud rate is, the quicker the transmission speed is and the weaker the anti-interference is. If the twisted pairs of 0.56 mm ( 24 AWG ) is applied as the communication cables, the max. transmission distance is as below:

| Baud rate | Max. transmission <br> distance | Baud rate | Max. transmission <br> distance |
| :---: | :---: | :---: | :---: |
| $2400 B P S$ | 1800 m | 9600 BPS | 800 m |
| $4800 B P S$ | 1200 m | 19200 BPS | 600 m |

It is recommended to use shield cables and make the shield layer as the grounding wires during RS485 remote communication.

In the cases with less devices and shorter distance, it is recommended to use $120 \Omega$ terminal resistor as the performance will be weakened if the distance increase even though the network can perform well without load resistor.

### 9.3.2 RTU mode

### 9.3.2.1 RTU communication frame format

If the controller is set to communicate by RTU mode in MODBUS network every 8 bit byte in the message includes two 4Bit hex characters. Compared with ACSII mode, this mode can send more data at the same baud rate.

## Code system

- 1 start bit
- $\quad 7$ or 8 digital bit, the minimum valid bit can be sent firstly. Every 8 bit frame includes two hex characters (0...9, A...F)
- 1 even/odd check bit. If there is no checkout, the even/odd check bit is inexistent.
- 1 end bit (with checkout), 2 Bit(no checkout)


## Error detection field

- CRC

The data format is illustrated as below:

11-bit character frame (BIT1 - BIT8 are the digital bits)

| Start bit | BIT1 | BIT2 | BIT3 | BIT4 | BIT5 | BIT6 | BIT7 | BIT8 | Check bit | End bit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

10-bit character frame (BIT1 - BIT7 are the digital bits)

| Start bit | BIT1 | BIT2 | BIT3 | BIT4 | BIT5 | BIT6 | BIT7 | Check bit | End bit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

In one character frame, the digital bit takes effect. The start bit, check bit and end bit is used to send the digital bit right to the other device. The digital bit, even/odd checkout and end bit should be set as the same in real application.

The MODBUS minimum idle time between frames should be no less than 3.5 bytes. The network device is detecting, even during the interval time, the network bus. When the first field (the address field) is received, the corresponding device decodes next transmitting character. When the interval time is at least 3.5 byte, the message ends.

The whole message frame in RTU mode is a continuous transmitting flow. If there is an interval time (more than 1.5 bytes) before the completion of the frame, the receiving device will renew the uncompleted message and suppose the next byte as the address field of the new message. As such, if the new message follows the previous one within the interval time of 3.5 bytes, the receiving device will deal with it as the same with the previous message. If these two phenomena all happen during the transmission, the CRC will generate a fault message to respond to the sending devices. The standard structure of RTU frame:

| START | T1-T2-T3-T4(transmission time of 3.5 bytes) |
| :--- | :--- |
| ADDR | Communication address: $0-247$ (decimal system)(0 is the broadcast <br> address) |
| CMD | 03H: read slave parameters <br> 06H: write slave parameters |
| DATA (N-1) <br> $\ldots$ | The data of 2*N bytes are the main content of the communication as <br> well as the core of data exchanging |
| CRC CHK low bit | Detection value: CRC (16BIT) |
| CRC CHK high bit | T1-T2-T3-T4(transmission time of 3.5 bytes) |
| END |  |

### 9.3.2.2 RTU communication frame error checkout

Various factors (such as electromagnetic interference) may cause error in the data transmission. For example, if the sending message is a logic "1",A-B potential difference on RS485 should be 6 V , but in reality, it may be -6 V because of electromagnetic interference, and then the other devices take the sent message as logic" 0 ". If there is no error checkout, the receiving devices will not find the message is wrong and they may give incorrect response which cause serious result. So the checkout is essential to the message.

The theme of checkout is that: the sender calculate the sending data according to a fixed formula, and then send the result with the message. When the receiver gets this message, they will calculate
anther result according to the same method and compare it with the sending one. If two results are the same, the message is correct. If not, the message is incorrect.

The error checkout of the frame can be divided into two parts: the bit checkout of the byte and the whole data checkout of the frame (CRC check).

## Bit checkout of the byte

The user can select different bit checkouts or non-checkout, which impacts the check bit setting of each byte.

The definition of even checkout: add an even check bit before the data transmission to illustrate the number of " 1 " in the data transmission is odd number or even number. When it is even, the check byte is " 0 ", otherwise, the check byte is" 1 ". This method is used to stabilize the parity of the data.

The definition of odd checkout: add an odd check bit before the data transmission to illustrate the number of " 1 " in the data transmission is odd number or even number. When it is odd, the check byte is " 0 ", otherwise, the check byte is" 1 ". This method is used to stabilize the parity of the data.

For example, when transmitting "11001110", there are five " 1 " in the data. If the even checkout is applied, the even check bit is " 1 "; if the odd checkout is applied; the odd check bit is " 0 ". The even and odd check bit is calculated on the check bit position of the frame. And the receiving devices also carry out even and odd checkout. If the parity of the receiving data is different from the setting value, there is an error in the communication.

## CRC check

The checkout uses RTU frame format. The frame includes the frame error detection field which is based on the CRC calculation method. The CRC field is two bytes, including 16 figure binary values. It is added into the frame after calculated by transmitting device. The receiving device recalculates the CRC of the received frame and compares them with the value in the received CRC field. If the two CRC values are different, there is an error in the communication.

During CRC, $0^{*}$ FFFFF will be stored. And then, deal with the continuous 6 -above bytes in the frame and the value in the register. Only the 8Bit data in every character is effective to CRC, while the start bit, the end and the odd and even check bit is ineffective.

The calculation of CRC applies the international standard CRC checkout principles. When the user is editing CRC calculation, he can refer to the relative standard CRC calculation to write the required CRC calculation program.

Here provided a simple function of CRC calculation for the reference (programmed with C language):

```
unsigned int crc_cal_value(unsigned char * data_value, unsigned char
```

data_length)
\{
int i;
unsigned int crc_value=0xffff;
while(data_length--)

```
{ crc_value^=*data_value++;
    for(i=0;i<8;i++)
    {
if(crc_value&0x0001)crc_value=(crc_value>>1)^0xa001;
    else crc_value=crc_value>>1;
    } }
return(crc_value);
}
```

In ladder logic, CKSM calculated the CRC value according to the frame with the table inquiry. The method is advanced with easy program and quick calculation speed. But the ROM space the program occupied is huge. So use it with caution according to the program required space.

### 9.4 RTU command code and communication data illustration

### 9.4.1 RTU mode

### 9.4.1.1 Command code: 03H

read N words (Word) $(\mathrm{N} \leq 16)$
Command code 03H means that if the master read data from the VFD, the reading number depends on the "data number" in the command code. Max. continuous reading number is 16 and the parameter address should be continuous. The byte length of every data is 2 (one word). The following command format is illustrated by hex (a number with "H" means hex) and one hex occupies one byte.

The command code is used to read the working step of the VFD.
For example, read continuous 2 data content from0004H from the VFD with the address of 01 H (read the content of data address of 0004 H and 0005 H ), the frame structure is as below:

RTU master command message (from the master to the VFD)

| START | T1-T2-T3-T4 (transmission time of 3.5 bytes) |
| :---: | :---: |
| ADDR | 01 H |
| CMD | 03 H |
| High bit of the start address | 00 H |
| Low bit of the start address | 04 H |
| High bit of data number | 00 H |
| Low bit of data number | 02 H |
| CRC low bit | 85 H |
| CRC high bit | CAH |
| END | T1-T2-T3-T4 (transmission time of 3.5 bytes) |

T1-T2-T3-T4 between START and END is to provide at least the time of 3.5 bytes as the leisure time and distinguish two messages for the avoidance of taking two messages as one message.

ADDR $=01 \mathrm{H}$ means the command message is sent to the VFD with the address of 01 H and ADDR occupies one byte
$\mathrm{CMD}=03 \mathrm{H}$ means the command message is sent to read data from the VFD and CMD occupies one byte
"Start address" means reading data form the address and it occupies 2 bytes with the fact that the high bit is in the front and the low bit is in the behind.
"Data number" means the reading data number with the unit of word. If the "start address" is 0004 H and the "data number" is 0002 H , the data of 0004 H and 0005 H will be read.

CRC occupies 2 bytes with the fact that the high bit is in the front and the low bit is in the behind.
RTU slave response message (from the VFD to the master)

| START | T1-T2-T3-T4 (transmission time of 3.5 bytes) |
| :---: | :---: |
| ADDR | 01 H |
| CMD | 03 H |
| Byte number | 04 H |
| Data high bit of address 0004H | 13 H |
| Data low bit of address 0004H | 88 H |
| Data high bit of address 0005H | 00 H |
| Data low bit of address 0005H | 00 H |
| CRC CHK low bit | 7 HH |
| CRC CHK high bit | $9 D \mathrm{H}$ |
| END | T1-T2-T3-T4 (transmission time of 3.5 bytes) |

The meaning of the response is that:
ADDR $=01 \mathrm{H}$ means the command message is sent to the VFD with the address of 01 H and ADDR occupies one byte
$C M D=03 \mathrm{H}$ means the message is received from the VFD to the master for the response of reading command and CMD occupies one byte
"Byte number" means all byte number from the byte(excluding the byte) to CRC byte(excluding the byte). 04 means there are 4 byte of data from the "byte number" to "CRC CHK low bit", which are "digital address 0004H high bit", "digital address 0004H low bit", "digital address 0005H high bit" and "digital address 0005H low bit".

There are 2 bytes stored in one data with the fact that the high bit is in the front and the low bit is in the behind of the message, the data of data address 0004 H is 1388 H , and the data of data address 0005 H is 0000 H .

CRC occupies 2 bytes with the fact that the high bit is in the front and the low bit is in the behind.

### 9.4.1.2 Command code: 06H

06H (correspond to binary 0000 0110), write one word (Word)
The command means that the master write data to the VFD and one command can write one data other than multiple dates. The effect is to change the working mode of the VFD.

For example, write $5000(1388 \mathrm{H})$ to 0004 H from the VFD with the address of 02 H , the frame structure is as below:

RTU master command message (from the master to the VFD)

| START | T1-T2-T3-T4(transmission time of 3.5 bytes) |
| :---: | :---: |
| ADDR | 02 H |
| CMD | 06 H |
| High bit of write data address | 00 H |
| Low bit of write data address | 04 H |
| High bit of data content | 13 H |
| Low bit of data content | 88 H |
| CRC CHK low bit | C5H |
| CRC CHK high bit | 6 HH |
| END | T1-T2-T3-T4 (transmission time of 3.5 bytes) |

RTU slave response message (from the VFD to the master)

| START | T1-T2-T3-T4 (transmission time of 3.5 bytes) |
| :---: | :---: |
| ADDR | 02 H |
| CMD | 06 H |
| High bit of writing data address | 00 H |
| Low bit of writing data address | 04 H |
| High bit of data content | 13 H |
| Low bit of data content | 88 H |
| CRC CHK low bit | C5H |
| CRC CHK high bit | 6 EH |
| END | T1-T2-T3-T4 (transmission time of 3.5 bytes) |

Note: section 9.4.1 and 9.4.2 mainly describe the command format, and the detailed application will be mentioned in 9.6 with examples.

### 9.4.1.3 Command code 08H for diagnosis

Meaning of sub-function codes

| Sub-function Code | Description |
| :---: | :---: |
| 0000 | Return to inquire information data |

For example: The inquiry information string is same as the response information string when the loop detection to address 01 H of driver is carried out.

The RTU request command is:

| START | T1-T2-T3-T4 (transmission time of 3.5 bytes) |
| :---: | :---: |
| ADDR | 01 H |
| CMD | 08 H |
| High bit of sub-function code | 00 H |
| Low bit of sub-function code | 00 H |
| High bit of data content | 12 H |
| Low bit of data content | ABH |
| Low bit of CRC | ADH |
| High bit of CRC | 14 H |
| END | T1-T2-T3-T4 (transmission time of 3.5 bytes) |

The RTU response command is:

| START | T1-T2-T3-T4 (transmission time of 3.5 bytes) |
| :---: | :---: |
| ADDR | 01 H |
| CMD | 08 H |
| High bit of sub-function code | 00 H |
| Low bit of sub-function code | 00 H |
| High bit of data content | 12 H |
| Low bit of data content | ABH |
| Low bit of CRC | ADH |
| High bit of CRC | 14 H |
| END | T1-T2-T3-T4 (transmission time of 3.5 bytes) |

### 9.4.1.4 Command code: 10 H , continuous writing

Command code 10H means that if the master writes data to the VFD, the data number depends on the "data number" in the command code. The max. continuous reading number is 16.

For example, write $5000(1388 \mathrm{H})$ to 0004 H of the VFD whose slave address is 02 H and $50(0032 \mathrm{H})$ to 0005 H , the frame structure is as below:

The RTU request command is:

| START | T1-T2-T3-T4 (transmission time of 3.5 bytes) |
| :---: | :---: |
| ADDR | 02 H |
| CMD | 10 H |
| High bit of write data | 00 H |
| Low bit of write data | 04 H |
| High bit of data number | 00 H |
| Low bit of data number | 02 H |
| Byte number | 04 H |
| High bit of data 0004 H | 13 H |
| Low bit of data 0004 H | 88 H |
| High bit of data 0005 H | 00 H |
| Low bit of data 0005 H | 32 H |


| Low bit of CRC | C5H |
| :---: | :---: |
| High bit of CRC | 6 EH |
| END | T1-T2-T3-T4 (transmission time of 3.5 bytes) |

The RTU response command is:

| START | T1-T2-T3-T4 (transmission time of 3.5 bytes) |
| :---: | :---: |
| ADDR | 02 H |
| CMD | 10 H |
| High bit of write data | 00 H |
| Low bit of write data | 04 H |
| High bit of data number | 00 H |
| Low bit of data number | 02 H |
| Low bit of CRC | C 5 H |
| High bit of CRC | 6 EH |
| END | T1-T2-T3-T4 (transmission time of 3.5 bytes) |

### 9.4.2 ASCII mode

9.4.2.1 Command code: 03H (0000 0011), read N words (Word) ( $\mathrm{N} \leqslant 16$ words)

For instance: As for the VFD whose slave address is 01 H , the starting address of internal storage is 0004, read two words continuously, the structure of this frame is listed as below:

| ASCII master command message (the command sent from master to the VFD |  | ASCII slave response message (the message sent from VFD to the master) |  |
| :---: | :---: | :---: | :---: |
| START | ':' | START | ':' |
| ADDR | '0' | ADDR | '0' |
|  | '1' |  | '1' |
| CMD | '0' | CMD | '0' |
|  | '3' |  | '3' |
| High bit of starting address | '0' | Byte number | '0' |
|  | '0' |  | '4' |
| Low bit of starting address | '0' | High bit of data address 0004H | '1' |
|  | '4' |  | '3' |
| High bit of data number | '0' | Low bit of data address 0004H | '8' |
|  | '0' |  | '8' |
| Low bit of data number | '0' | High bit of data address$0005 \mathrm{H}$ | '0' |
|  | '2' |  | '0' |
| LRC CHK Hi | 'F' | Low bit of data address 0005H | '0' |
| LRC CHK Lo | '6' |  | '0' |
| END Hi | CR | LRC CHK Hi | '5' |
| END Lo | LF | LRC CHK Lo | 'D' |
|  |  | END Hi | CR |
|  |  | END Lo | LF |

### 9.4.2.2 Command code: 06 H ( 0000 0110), write one word (Word)

For instance: Write $5000(1388 \mathrm{H})$ to the 0004 H address of the VFD whose slave address is 02 H , then the structure of this frame is listed as below:

| ASCII master command message (the command sent by the master to the VFD) |  | ASCII slave response message (the message sent by the VFD to the master) |  |
| :---: | :---: | :---: | :---: |
| START | ':' | START | ! |
| ADDR | '0' | ADDR | '0' |
|  | '2' |  | '2' |
| CMD | '0' | CMD | '0' |
|  | '6' |  | '6' |
| High bit of write data | '0' | High bit of write data | '0' |
|  | '0' |  | '0' |
| Low bit of write data | '0' | Low bit of write data | '0' |
|  | '4' |  | '4' |
| High bit of data content | '1' | High bit of data content | '1' |
|  | '3' |  | '3' |
| Low bit of data content | '8' | Low bit of data content | '8' |
|  | '8' |  | '8' |
| LRC CHK Hi | '5' | LRC CHK Hi | 5 |
| LRC CHK Lo | '9' | LRC CHK Lo | '9' |
| END Hi | CR | END Hi | CR |
| END Lo | LF | END Lo | LF |

9.4.2.3 Command code: $08 \mathrm{H}(00001000)$, diagnose function

Meaning of sub function code:

| Sub function code | Instruction |
| :---: | :---: |
| 0000 | Return inquiry message data |

For instance: carry out circuit detection on drive address 01 H , the content of inquiry message word string is the same with response message word string, its format is listed as below:

| ASCII master command message (the command sent by the master to the VFD) |  | ASCII slave response message (the message sent by the VFD to the master) |  |
| :---: | :---: | :---: | :---: |
| START | ':' | START | ':' |
| ADDR | '0' | ADDR | '0' |
|  | '1' |  | '1' |
| CMD | '0' | CMD | '0' |
|  | '8' |  | '8' |
| High bit of write data address | '0' | High bit of write data address | '0' |
|  | '0' |  | '0' |
| Low bit of write data address | '0' | Low bit of write data address | 0 |
|  | '0' |  | '0' |


| ASCII master command message (the command sent by the master to the VFD) |  | ASCII slave response message (the message sent by the VFD to the master) |  |
| :---: | :---: | :---: | :---: |
| High bit of data content | '1' | High bit of data content | '1' |
|  | '2' |  | '2' |
| Low bit of data content | 'A' | Low bit of data content | 'A' |
|  | 'B' |  | 'B' |
| LRC CHK Hi | '3' | LRC CHK Hi | '3' |
| LRC CHK Lo | ' A ' | LRC CHK Lo | ' ${ }^{\text {' }}$ |
| END Hi | CR | END Hi | CR |
| END Lo | LF | END Lo | LF |

### 9.4.2.4 Command code: 10 H , continuous writing function

Command code 10 H means the master write data to the VFD, the number of data being written is determined by the command "data number", the max. number of continuous writing is 16 words.

For instance: Write $5000(1388 \mathrm{H})$ to 0004 H of the VFD whose slave address is 02 H , write $50(0032 \mathrm{H})$ to 0005 H of the VFD whose slave address is 02 H , then the structure of this frame is listed as below:

| ASCII master command message (the command sent by the master to the VFD) |  | ASCII slave response message (the message sent by the VFD to the master) |  |
| :---: | :---: | :---: | :---: |
| START | ':' | START | ':' |
| ADDR | '0' | ADDR | '0' |
|  | '2' |  | '2' |
| CMD | '1' | CMD | '1' |
|  | '0' |  | '0' |
| High bit of starting address | '0' | High bit of starting address | '0' |
|  | '0' |  | '0' |
| Low bit of starting address | '0' | Low bit of starting address | '0' |
|  | '4' |  | '4' |
| High bit of data number | '0' | High bit of data number | '0' |
|  | '0' |  | '0' |
| Low bit of data number | '0' | Low bit of data number | '0' |
|  | '2' |  | '2' |
| Byte number | '0' | LRC CHK Hi | 'E' |
|  | '4' | LRC CHK Lo | '8' |
| High bit of data 0004H content | '1' | END Hi | CR |
|  | '3' | END Lo | LF |
| Low bit of data 0004H content | '8' |  |  |
|  | '8' |  |  |
| High bit of data 0005 H content | '0' |  |  |
|  | '0' |  |  |
| Low bit of data 0005H content | '3' |  |  |
|  | '2' |  |  |
| LRC CHK Hi | '1' |  |  |
| LRC CHK Lo | '7' |  |  |


| ASCII master command message (the <br> command sent by the master to the VFD) |  | ASCII slave response message (the message <br> sent by the VFD to the master) |  |
| :---: | :---: | :---: | :---: |
| END Hi | CR |  |  |
| END Lo | LF |  |  |

### 9.5 The definition of data address

The address definition of the communication data in this part is to control the running of the VFD and get the state information and relative function parameters of the VFD.

### 9.5.1 The rules of parameter address of the function codes

The parameter address occupies 2 bytes with the fact that the high bit is in the front and the low bit is in the behind. The range of high and low byte are: high byte-00-ffH; low byte-00-ffH. The high byte is the group number before the radix point of the function code and the low byte is the number after the radix point. But both the high byte and the low byte should be changed into hex. For example F05.06, the group number before the radix point of the function code is 05 , then the high bit of the parameter is 05 , the number after the radix point 05 , then the low bit of the parameter is 06 , then the function code address is 0506 H and the parameter address of F 10.01 is 0 A 01 H .

| Function code | Name | Parameter description | Default <br> value | Modify |
| :---: | :---: | :--- | :---: | :---: |
| F10.00 | Simple PLC <br> means | 0: Stop after running once. <br> 1: Run at the final value after running <br> once. <br> 2. Cycle running. | 0 | $\circ$ |
| F10.01 | Simple PLC <br> memory <br> selection | 0: Power loss without memory <br> 1: Power loss: PLC record the running <br> stage and frequency when power loss. | 0 | $\circ$ |

Note: F29. group is the factory parameter which cannot be read or changed. Some parameters cannot be changed when the VFD is in the running state and some parameters cannot be changed in any state. The setting range, unit and relative instructions should be paid attention to when modifying the function code parameters.

Besides, EEPROM is stocked frequently, which may shorten the usage time of EEPROM. For users, some functions are not necessary to be stocked on the communication mode. The needs can be met on by changing the value in RAM. Changing the high bit of the function code from 0 to 1 can also realize the function. For example, the function code F00.07 is not stocked into EEPROM. Only by changing the value in RAM can set the address to 8007 H . This address can only be used in writing RAM other than reading. If it is used to read, it is an invalid address.

### 9.5.2 The address instruction of other function in MODBUS

The master can operate on the parameters of the VFD as well as control the VFD, such as running or stopping and monitoring the working state of the VFD.

The following table shows the parameter list of other functions:

| Function instruction | Address definition | Data meaning instruction | R/W <br> characteristics |
| :---: | :---: | :---: | :---: |
| Communication control command | 2000H | 0001H: forward running | R/W |
|  |  | 0002H: reverse running |  |
|  |  | 0003H: forward jogging |  |
|  |  | 0004H: reverse jogging |  |
|  |  | 0005H: stop |  |
|  |  | 0006H: coast to stop |  |
|  |  | 0007H: fault reset |  |
|  |  | 0008H: jogging stop |  |
| The address of the communication n setting value | 2001H | Communication setting frequency (0-Fmax (unit: 0.01 Hz )) | R/W |
|  | 2002H | PID reference, range (0-1000, 1000 corresponds to100.0\% ) |  |
|  | 2003H | PID feedback, range (0 - 1000, 1000 corresponds to100.0\% ) | R/W |
|  | 2004H | Torque setting value (-3000-3000, 1000 corresponds to the $100.0 \%$ of the rated current of the motor) | R/W |
|  | 2005H | The upper limit frequency setting during forward rotation (0-Fmax (unit: 0.01 Hz )) | R/W |
|  | 2006H | The upper limit frequency setting during reverse rotation ( $0-\mathrm{Fmax}$ (unit: 0.01 Hz )) | R/W |
|  | 2007H | The upper limit torque of electromotion torque (0-3000, 1000 corresponds to the $100.0 \%$ of the rated current of the motor) | R/W |
|  | 2008H | The upper limit torque of braking torque (0-3000, 1000 corresponds to the $100.0 \%$ of the rated current of the motor) | R/W |
|  | 2009H | Special control command word $\begin{aligned} \text { Bit0-1: }=00: \text { motor } 1 & =01: \text { motor } 2 \\ =10: \text { motor } 3 & =11: \text { motor } 4 \\ \text { Bit2: }=1 & \text { torque control } \end{aligned}=0: \text { speed control } .$ | R/W |
|  | 200AH | Virtual input terminal command , range: 0x000-0x1FF | R/W |
|  | 200BH | Virtual output terminal command, range: $0 \times 00-0 \times 0 F$ | R/W |
|  | 200CH | Voltage setting value(special for V/F separation) <br> ( $0-1000,1000$ corresponds to the $100.0 \%$ of the rated voltage of the motor) | R/W |


| Function instruction | Address definition | Data meaning instruction | R/W <br> characteristics |
| :---: | :---: | :---: | :---: |
|  | 200DH | AO output setting 1 (-1000-1000, 1000 corresponds to 100.0\%) | R/W |
|  | 200EH | AO output setting 2(-1000-1000, 1000 corresponds to 100.0\%) | R/W |
| SW 1 of the VFD | 2100 H | 0001H: forward running | R |
|  |  | 0002H: forward running |  |
|  |  | 0003H: stop |  |
|  |  | 0004H: fault |  |
|  |  | 0005H: POFF state |  |
| SW 2 of the VFD | 2101H | Bit0: $=0$ : bus voltage is not established $=1$ : bus voltage is established <br> Bi1-2: $=00$ : motor $1=01$ : motor 2 <br> =10: motor 3 =11: motor 4 <br> Bit3: =0: asynchronous motor $=1$ : <br> synchronous motor <br> Bit4: $=0$ : pre-alarm without overload $=1$ : <br> overload pre-alarm <br> Bit5- Bit6: =00: keypad control <br> =01: terminal control <br> =10: communication control | R |
| Fault code of the VFD | 2102H | See the fault type instruction | R |
| Identifying code of the VFD | 2103H | SG200 -----0x0107 | R |
| Operation <br> frequency | 3000 H | Range: $0.00 \mathrm{~Hz}-\mathrm{F} 00.03$ | R |
| Setting frequency | 3001H | Range: $0.00 \mathrm{~Hz}-\mathrm{F} 00.03$ | R |
| Bus voltage | 3002H | Range: 0-1200V | R |
| Output voltage | 3003H | Range: 0-1200V | R |
| Output current | 3004H | Range: 0.0-5000.0A | R |
| Operation speed | 3005H | Range: 0-65535RPM | R |
| Output power | 3006H | Range: -300.0-300.0\% | R |
| Output torque | 3007H | Range: 0-65535RPM | R |
| Close loop setting | 3008H | Range:-100.0\% - 100.0\% | R |
| Close loop feedback | 3009H | Range:-100.0\% - 100.0\% | R |
| Input IO state | 300AH | Range: 0000-00FF | R |


| Function <br> instruction | Address <br> definition | Data meaning instruction | R/W <br> characteristics |
| :---: | :---: | :--- | :---: |
| Output IO state | 300 BH | Range: 0000-00FF | R |
| Al 1 | 300 CH | Range: $0.00-10.00 \mathrm{~V}$ | R |
| Al 2 | 300 DH | Range: $0.00-10.00 \mathrm{~V}$ | R |
| AI 3 | 300 EH | Range: $0.00-10.00 \mathrm{~V}$ | R |
| Al 4 | 300 FH | Reserved | R |
| Read high speed <br> pulse 1 input | 3010 H | Range: $0.00-50.00 \mathrm{kHz}$ | R |
| Read high speed <br> pulse 2 input | 3011 H | Reserved | R |
| Read current <br> step of multi-step <br> speed | 3012 H | Range: $0-15$ | R |
| External length | 3013 H | Range: $0-65535$ | R |
| External <br> counting value | 3014 H | Range: $0-65535$ | R |
| Torque setting | 3015 H | Range: $0-65535$ | R |
| VFD code | 3016 H |  | R |
| Fault code | 5000 H |  | R |

R/W characteristics means the function is with read and write characteristics. For example, "communication control command" is writing chrematistics and control the VFD with writing command $(06 \mathrm{H})$. R characteristic can only read other than write and W characteristic can only write other than read.

Note: when operate on the VFD with the table above, it is necessary to enable some parameters. For example, the operation of running and stopping, it is necessary to set F00.01 to communication running command channel and set F00.02 to MODBUS communication channel. And when operate on "PID reference", it is necessary to set F09.00 to "MODBUS communication setting".

The encoding rules for device codes (corresponds to identifying code 2103H of the VFD)

| Code high 8 bit | Meaning | Code low 8 bit | Meaning |
| :---: | :---: | :---: | :---: |
| 01 | SG | 0x08 | Reserved |
|  |  | $0 \times 09$ | Reserved |
|  |  | $0 \times 0 \mathrm{a}$ | Reserved |
|  |  | $0 \times 0 \mathrm{~b}$ | Reserved |
|  |  | 0x0c | SG200 general VFDs |
|  |  | 0x0d | Reserved |

Note: The code is consisted of 16 bits including high 8 bits and low 8 bits. High 8 bits mean the motor type series and low 8 bits mean the derived motor types of the series. For example, 0110H means SG200 vector VFDs.

### 9.5.3 Fieldbus ratio values

The communication data is expressed by hex in actual application and there is no radix point in hex. For example, 50.12 Hz cannot be expressed by hex so 50.12 can be magnified by 100 times into 5012, so hex 1394 H can be used to express 50.12 .

A non-integer can be timed by a multiple to get an integer and the integer can be called fieldbus ratio values.

The fieldbus ratio values are referred to the radix point of the setting range or default value in the function parameter list. If there are figures behind the radix point $(n=1)$, then the fieldbus ratio value m is $10^{n}$. Take the table as the example:

| Function <br> code | Name | Details | Setting range | Default value | Modify |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F01.20 | Wake-up from <br> sleep delay time | $0.0-3600.0 \mathrm{~s}$ (valid <br> when F01. 19=2) | $0.0-3600.0$ | 0.0 s | 0 |
| F01.21 | Restart after <br> power off | 0: Disable <br> 1: Enable | $0-1$ | 0 | 0 |

If there is one figure behind the radix point in the setting range or the default value, then the fieldbus ratio value is 10 . If the data received by the upper monitor is 50 , then the "hibernation restore delay time" is $5.0(5.0=50 \div 10)$.

If MODBUS communication is used to control the hibernation restore delay time as 5.0 s. Firstly, 5.0 can be magnified by 10 times to integer $50(32 \mathrm{H})$ and then this data can be sent.

| 01 | 06 | 0114 | 0032 | $49 \mathrm{E7}$ |
| :---: | :---: | :---: | :---: | :---: |
| VFD address | Write command | Parameters address | Data number | CRC check |

After the VFD receives the command, it will change 50 into 5 according to the fieldbus ratio value and then set the hibernation restore delay time as 5 s .

Another example, after the upper monitor sends the command of reading the parameter of hibernation restore delay time, if the response message of the VFD is as following:


Because the parameter data is $0032 \mathrm{H}(50)$ and 50 divided by 10 is 5 , then the hibernation restore delay time is 5 s .

### 9.5.4 Fault message response

There may be fault in the communication control. For example, some parameter can only be read. If a writing message is sent, the VFD will return a fault response message.

The fault message is from the VFD to the master, its code and meaning is as follows:

| Code | Name | Meaning |
| :---: | :---: | :---: |
| 01H | Illegal command | The command from master cannot be executed. The reason maybe: <br> 1. This command is only for new version and this version cannot realize. <br> 2. Slave is in fault state and cannot execute it. |
| 02H | Illegal data address. | Some of the operation addresses are invalid or not allowed to access. Especially the combination of the register and the transmitting bytes are invalid. |
| 03H | Illegal value | When there are invalid data in the message framed received by slave, Note: This error code does not indicate the data value to write exceed the range, but indicate the message frame is an illegal frame. |
| 04H | Operation failed | The parameter setting in parameter writing is invalid. For example, the function input terminal cannot be set repeatedly. |
| 05H | Password error | The password written to the password check address is not same as the password set by F07.00. |
| 06H | Data frame error | In the frame message sent by the upper monitor, the length of the digital frame is incorrect or the counting of CRC check bit in RTU is different from the lower monitor. |
| 07H | Written not allowed. | It only happen in write command, the reason maybe: <br> 1. The written data exceeds the parameter range. <br> 2. The parameter should not be modified now. <br> 3. The terminal has already been used. |
| 08H | The parameter cannot be changed during running | The modified parameter in the writing of the upper monitor cannot be modified during running. |
| 09H | Password protection | When the upper monitor is writing or reading and the user password is set without password unlocking, it will report that the system is locked. |

The slave uses functional code fields and fault addresses to indicate it is a normal response or some error occurs (named as objection response). For normal responses, the slave shows corresponding function codes, digital address or sub-function codes as the response. For objection responses, the slave returns a code which equals the normal code, but the first byte is logic 1.

For example: when the master sends a message to the slave, requiring it to read a group of address data of the VFD function codes, there will be following function codes:

$$
00000011 \text { (Hex 03H) }
$$

For normal responses, the slave responds the same codes, while for objection responses, it will return:

## 10000011 (Hex 83H)

Besides the function codes modification for the objection fault, the slave will respond a byte of abnormal code which defines the error reason.

When the master receives the response for the objection, in a typical processing, it will send the message again or modify the corresponding order.

For example, set the "running command channel" of the VFD (F00.01, parameter address is 0001 H ) with the address of 01 H to 03 , the command is as following:

| 01 | 06 | 0001 | 0003 | 98 0B |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{VFD} \\ \text { address } \end{gathered}$ | $\begin{gathered} \text { Write } \\ \text { command } \end{gathered}$ | Parameters | $\begin{aligned} & \text { Parameters } \\ & \text { data } \end{aligned}$ | CRC check |

But the setting range of "running command channel" is $0-2$, if it is set to 3 , because the number is beyond the range, the VFD will return fault response message as below:


Abnormal response code 86 H means the abnormal response to writing command 06 H ; the fault code is 04 H . In the table above, its name is operation failed and its meaning is that the parameter setting in parameter writing is invalid. For example, the function input terminal cannot be set repeatedly.

### 9.6 Example of writing and reading

Refer to9.4.1 and9.4.2 for the command format.

### 9.6.1 Example of reading command 03 H

Read the state word 1 of the VFD with the address of 01 H (refer to the parameter list in9.5.2). From the table 1 , the parameter address of the state word 1 of the VFD is 2100 H .

## RTU mode:

The command sent to the VFD:

| 01 | 03 | 2100 | 0001 | 8E 36 |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { ved } \\ \text { address } \end{gathered}$ | Read | Parameters address | Data number | CRC ched |

The response message may be as follows:

$\underset{$|  VFD  |
| :---: |
|  address  |$}{01} \underset{$|  Read  |
| :---: |
|  command  |\(}{\mathbf{0 3}} \underset{\substack{Datas <br>

address}}{\mathbf{0 2}} \quad Data content 0 0003 \quad \underset{CRC check}{F8 45}\)

## ASCII mode:

The command sent to the VFD:

If the operation is successful, the response may be as follows:


The data content is 0003 H . From the table 1, the VFD stops.

### 9.6.2 Example of writing command 06 H

Example 1: make the VFD with the address of 03 H to run forward. See table 1, the address of "communication control command" is 2000 H and forward running is 0001 . See the following table.

| Function instruction | Address definition | Data meaning instruction | R/W characteristics |
| :---: | :---: | :---: | :---: |
| Communication control command | 2000H | 0001H: forward running | R/W |
|  |  | 0002H: reverse running |  |
|  |  | 0003H: forward jogging |  |
|  |  | 0004H: reverse jogging |  |
|  |  | 0005H: stop |  |
|  |  | 0006H: coast to stop (emergency stop) |  |
|  |  | 0007H: fault reset |  |
|  |  | 0008H: jogging stop |  |

## RTU mode:

The command sent by the master:

| 03 | 06 | 2000 | 0001 | 4228 |
| :---: | :---: | :---: | :---: | :---: |
| VFD | Write | Parameter address | Forward running | CRC chec |

If the operation is successful, the response may be as follows (the same with the command sent by the master):

| 03 | 06 | 2000 | 0001 | 4228 |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { VFD } \\ \text { address } \end{gathered}$ | Write comman | Parameters address | Forward running | CRC check |

## ASCII mode:

The command sent to the VFD:

If the operation is successful, the response may be as follows (the same with the command sent by the master):

Example 2: set the max. output frequency of the VFD with the address of 03 H as 100 Hz .

| Function <br> code | Name | Details | Setting range | Default <br> value | Modify |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F00.03 | Max output <br> frequency | F00.04- 600.00 Hz <br> $(400.00 \mathrm{~Hz})$ | $10.00-600.00$ | 50.00 Hz | 0 |

See the figures behind the radix point, the fieldbus ratio value of the max. output frequency (F00.03) is 100.100 Hz timed by 100 is 10000 and the corresponding hex is 2710 H .

## RTU mode:

The command sent by the master:


If the operation is successful, the response may be as below (the same with the command sent by the master):


## ASCII mode:

The command sent to the VFD:


If the operation is successful, the response may be as follows (the same with the command sent by the master):

### 9.6.3 Example of continuous writing command 10 H

Example 1: make the VFD whose address is 01 H run forward at 10 Hz . Refer to the instruction of 2000 H and 0001 . Set the address of "communication setting frequency" is 2001 H and 10 Hz corresponds to 03E8H. See the table below.

| Function <br> instruction | Address <br> definition | Data meaning instruction | R/W <br> characteristics |
| :---: | :---: | :--- | :---: |
| Communication <br> control <br> command | 2000 H | 0001 H : forward running |  |
|  |  | 0002 H : reverse running | R/W |
|  | 0003 H : forward jogging |  |  |


| Function instruction | Address definition | Data meaning instruction | R/W characteristics |
| :---: | :---: | :---: | :---: |
|  |  | 0004H: reverse jogging |  |
|  |  | 0005H: stop |  |
|  |  | 0006H: coast to stop (emergency stop) |  |
|  |  | 0007H: fault reset |  |
|  |  | 0008H: jogging stop |  |
| The address of communication setting | 2001H | Communication setting frequency(0-Fmax(unit: $0.01 \mathrm{~Hz})$ ) | R/W |
|  | 2002H | PID given, range(0-1000, 1000 corresponds to100.0\% ) |  |

## RTU mode:

The command sent to the VFD:


If the operation is successful, the response may be as follows:


## ASCII mode:

The command sent to the VFD:


If the operation is successful, the response may be as follows:

Example 2: set the ACC time of 01H VFD as 10s and the DEC time as 20s

| Functio <br> n code | Name | Parameter description | Default value | Modify |
| :---: | :--- | :--- | :--- | :---: |
| F00.11 | Acceleration time 1 | Setting range of F00. 11 and | Depend on model | $\bigcirc$ |
| F00.12 | Deceleration time 1 | F00.12: $0.0-3600.0$ s |  |  |

The corresponding address of F00. 11 is 000B, the ACC time of 10 s corresponds to 0064 H , and the DEC time of 20 s corresponds to 00 C 8 H .

## RTU mode:

The command sent to the VFD:


If the operation is successful, the response may be as follows:

| 01 | 10 | 000 B | 0002 | 300 A |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { VFD } \\ \text { address } \end{gathered}$ | $\begin{aligned} & \text { Continuous } \\ & \text { writing } \\ & \text { command } \end{aligned}$ | $\begin{gathered} \text { Parameters } \\ \text { address } \end{gathered}$ | ${ }_{\substack{\text { Data } \\ \text { number }}}^{\text {a }}$ | CRC check |

## ASCII mode:

The command sent to the VFD:


If the operation is successful, the response may be as follows:

Note: The blank in the above command is for illustration. The blank cannot be added in the actual application unless the upper monitor can remove the blank by themselves.

## Appendix A Technical data

## A. 1 What this chapter contains

This chapter contains the technical specifications of the VFD, as well as provisions for fulfilling the requirements for CE and other marks.

## A. 2 Ratings

## A.2.1 Capacity

VFD sizing is based on the rated motor current and power. To achieve the rated motor power reference in the table, the rated current of the VFD must be higher than or equal to the rated motor current. Also the rated power of the VFD must be higher than or equal to the rated motor power. The power ratings are the same regardless of the supply voltage within one voltage range.

## Note:

1. The maximum allowed motor shaft power is limited to $1.5 \cdot \mathrm{PN}$. If the limit is exceeded, motor torque and current are automatically restricted. The function protects the input bridge of the drive against overload.
2. The ratings apply at ambient temperature of $40^{\circ} \mathrm{C}$
3. It is important to check that in Common DC systems the power flowing through the common DC connection does not exceed PN.

## A.2.2 Derating

The load capacity decreases if the installation site ambient temperature exceeds $40^{\circ} \mathrm{C}$, the altitude exceeds 1000 meters or the switching frequency is changed from 4 kHz to 8,12 or 15 kHz .

## A.2.2.1 Temperature derating

In the temperature range $+40^{\circ} \mathrm{C}-+50^{\circ} \mathrm{C}$, the rated output current is decreased by $1 \%$ for every additional $1^{\circ} \mathrm{C}$. Refer to the below list for the actual derating.


## A.2.2.2 Altitude derating

The device can output rated power if the installation site below 1000m. The output power decreases if the altitude exceeds 1000 meters. When the installation site altitude exceeds 1000 m , derate $1 \%$ for every increase of 100 m ; when the installation site altitude exceeds 3000 m , consult the local SGT dealer or office.

## A.2.2.3 Carrier frequency derating

For SG200 series VFDs, different power level corresponds to different carrier frequency range.
The rated power of the VFD is based on the factory carrier frequency, so if it is above the factory value, the VFD needs to derate $10 \%$ for every additional 1 kHz carrier frequency.

## A. 3 Electric power network specification

| Voltage | AC 3 PH $380(-15 \%)-440(+10 \%)$ <br> AC 3 PH $520(-15 \%)-690(+10 \%)$ |
| :---: | :--- |
| Short-circuit capacity | Maximum allowed prospective short-circuit current at the input power <br> connection as defined in IEC 60439-1 is 100 kA. The drive is suitable <br> for use in a circuit capable of delivering not more than 100 kA at the <br> drive maximum rated voltage. |
| Frequency | $50 / 60 \mathrm{~Hz} \pm 5 \%$, maximum rate of change 20\%/s |

## A. 4 Motor connection data

| Motor type | Asynchronous inductance motor |
| :---: | :--- |
| Voltage | 0 to U1, 3-phase symmetrical, Umax at the field weakening point |
| Short-circuit <br> protection | The motor output is short-circuit proof by IEC 61800-5-1 |
| Frequency | $0 \ldots . .400 \mathrm{~Hz}$ |
| Frequency resolution | 0.01 Hz |
| Current | Refer to Ratings |
| Power limit | $1.5 \cdot \mathrm{PN}$ |
| Field weakening <br> point | $10 \ldots 400 \mathrm{~Hz}$ |
| Carrier frequency | $4,8,12$ or 15 kHz |

## A.4.1 EMC compatibility and motor cable length

To comply with the European EMC Directive (2004/108/EC), use the following maximum motor cable lengths for 4 kHz carrier frequency.

| All frame sizes (with externally-connected <br> optional EMC filters) | Maximum motor cable length (m) |
| :---: | :---: |
| Second environment (category C3) | 30 |
| first environment (category C2) | 30 |

Maximum motor cable length is determined by the drive's operational factors. Contact your local SGT representative for the exact maximum lengths when using external EMC filters.

## A. 5 Applicable standards

The VFD complies with the following standards:

```
EN ISO 13849-1
```

Safety of machinery-safety related parts of control systems Part 1: general principles for design

IEC/EN 60204-1

IEC/EN 62061

IEC/EN 61800-3

IEC/EN 61800-5- 1

IEC/EN 61800-5-2

GB/T 30844.1

GB/T 30844.2

GB/T 30844.3

Safety of machinery. Electrical equipment of machines. Part 1: General requirements.

Safety of machinery - Functional safety of safety-related electrical, electronic and programmable electronic control systems
Adjustable speed electrical power drives systems. Part 3: EMC requirements and specific test methods Adjustable speed electrical power drive systems - Part 5-1: Safety requirements - Electrical, thermal and energy Adjustable speed electrical power drive systems - Part 5-2: Safety requirements. Functional. General-purpose variable-frequency adjustable-speed equipment of 1 kV and lower-Part 1: Technical conditions General-purpose variable-frequency adjustable-speed equipment of 1 kV and lower- Part 2: Test methods General-purpose variable-frequency adjustable-speed equipment of 1 kV and lower- Part 3: Safety regulations

## A.5.1 CE marking

The CE mark is attached to the drive to verify that the drive follows the provisions of the European Low Voltage (2014/35/EU) and EMC Directives (2014/30/EU).

## A.5.2 Compliance with the European EMC Directive

The EMC Directive defines the requirements for immunity and emissions of electrical equipment used within the European Union. The EMC product standard (EN 61800-3) covers requirements stated for drives. See sectionEMC regulations.

## A. 6 EMC regulations

EMC product standard (EN 61800-3) contains the EMC requirements to the VFD.
First environment: domestic environment (includes establishments connected to a low-voltage network which supplies buildings used for domestic purposes).

Second environment includes establishments connected to a network not directly supplying domestic premises.

Four categories of the VFD:
VFD of category C1: VFD of rated voltage less than 1000 V and used in the first environment.
VFD of category C2: VFD of rated voltage less than 1000 V other than pins, sockets and motion devices and intended to be installed and commissioned only by a professional electrician when used in the first environment.

## Note:

IEC/EN 61800-3 in EMC standard doesn't limit the power distribution of the VFD, but it defines the step, installation and commission. The professional electrician has necessary skills in installing
and/or commissioning power drive systems, including their EMC aspects.
VFD of category C3: VFD of rated voltage less than 1000 V and used in the second environment other than the first one.

VFD of category C4: VFD of rated voltage more than 1000 V or the rated current is above or equal to 400A and used in the complicated system in second environment.

## A.6.1 Category C2

The emission limits are complied with the following provisions:

1. The optional EMC filter is selected according to the options and installed as specified in the EMC filter manual.
2. The motor and control cables are selected as specified in this manual.
3. The drive is installed according to the instructions reference in this manual.
4. For the maximum motor cable length with 4 kHz switching frequency, seeEMC compatibility and motor cable length.

- In a domestic environment, this product may cause radio inference, in which case supplementary mitigation measures may be required.


## A.6.2 Category C3

The immunity performance of the drive complies with the demands of IEC/EN 61800-3, second environment.

The emission limits are complied with the following provisions:

1. The optional EMC filter is selected according to the options and installed as specified in the EMC filter manual.
2. The motor and control cables are selected as specified in this manual.
3. The drive is installed according to the instructions reference in this manual.
4. For the maximum motor cable length with 4 kHz switching frequency, seeEMC compatibility and motor cable length.


- A drive of category C3 is not intended to be used on a low-voltage public network which supplies domestic premises. Radio frequency interference is expected if the drive is used on such a network.


## Appendix B Dimension drawings

## B. 1 What this chapter contains

Dimension drawings of the SG200 are shown below. The dimensions are reference in millimeters.

## B. 2 Keypad structure

## B.2.1 Structure chart


B.2.2 Installation chart


Figure B-2 Keypad Installation bracket (standard configuration)

## B. 3 VFD dimension

| Model | $\begin{gathered} \text { W2 } \\ (\mathrm{mm}) \end{gathered}$ | $\underset{(\mathrm{mm})}{\mathrm{H} 2}$ | $\begin{gathered} \mathrm{H} 1 \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \text { W1 } \\ (\mathrm{mm}) \end{gathered}$ | $\underset{(\mathrm{mm})}{\mathrm{D}}$ | Mounting hole (mm) | Net weight (kg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Installation size |  | Product size |  |  |  |  |
| SG200-0007-4T | 129 | 229.11 | 241.5 | 140 | 181.3 | 5 | 3.7 |
| SG200-0011-4T |  |  |  |  |  |  |  |
| SG200-0015-4T | 188 | 305 | 322 | 205 | 200.2 | 6 | 7.5 |
| SG200-0018-4T |  |  |  |  |  |  |  |
| SG200-0022-4T |  |  |  |  |  |  |  |
| SG200-0030-4T | 200 | 403 | 415 | 250 | 239 | 6 | 13 |
| SG200-0037-4T |  |  |  |  |  |  |  |
| SG200-0045-4T | 130 | 542 | 556.5 | 269.9 | 327.5 | 7 | 30 |
| SG200-0055-4T |  |  |  |  |  |  |  |
| SG200-0075-4T |  |  |  |  |  |  |  |
| SG200-0090-4T | 200 | 662 | 680 | 325 | 364.5 | 9 | 47 |
| SG200-0110-4T |  |  |  |  |  |  |  |
| SG200-0132-4T |  |  |  |  |  |  |  |
| SG200-0160-4T | 250 | 731.25 | 750 | 400 | 329.5 | 9 | 70 |
| SG200-0185-4T |  |  |  |  |  |  |  |
| SG200-0200-4T | 180 | 840 | 863 | 500 | 357.5 | 11 | 85 |
| SG200-0220-4T |  |  |  |  |  |  |  |
| SG200-0250-4T | 230 | 926 | 960 | 680 | 382 | 13 | 135 |
| SG200-0280-4T |  |  |  |  |  |  |  |
| SG200-0315-4T |  |  |  |  |  |  |  |
| SG200-0355-4T |  |  |  |  |  |  |  |
| SG200-0400-4T | 230 | 1678 | 1700 | 620 | 560 | 22 | 410 |
| SG200-0450-4T |  |  |  |  |  |  |  |
| SG200-0500-4T |  |  |  |  |  |  |  |
| SG200-0560-4T |  |  |  |  |  |  |  |
| SG200-0630-4T | - | - | 1850 | 800 | 700 | - | - |
| SG200-0800-4T | - | - | 1850 | 1000 | 800 | - | - |
| SG200-1000-4T |  |  |  |  |  |  |  |


7.5-11KW models


15-22KW models





400-560kw


630-1000kw

## Appendix C Peripheral options and parts

## C. 1 Power supply

Please refer to Installation guidelines.

| - Check that the voltage degree of the VFD complies with the voltage of the |
| :--- | :--- |
| supply power voltage. |

## C. 2 Cables

## C.2.1 Power cables

Dimension the input power and motor cables according to local regulations.

- The input power and the motor cables must be able to carry the corresponding load currents.
- The cable must be rated for at least $70^{\circ} \mathrm{C}$ maximum permissible temperature of the conductor in continuous use.
- The conductivity of the PE conductor must be equal to that of the phase conductor (same cross-sectional area). For the 0037 and higher models, the cross sectional area of the PE grounding conductor can be slightly less than the recommended area.
- Refer to chapterTechnical datafor the EMC requirements.

A symmetrical shielded motor cable (see the figure below) must be used to meet the EMC requirements of the $C E$.

A four-conductor system is allowed for input cabling, but a shielded symmetrical cable is recommended. Compared to a four-conductor system, the use of a symmetrical shielded cable reduces electromagnetic emission of the whole drive system as well as motor bearing currents and wear.


Note: A separate PE conductor is required if the conductivity of the cable shield is not sufficient for the purpose.

To function as a protective conductor, the shield must have the same cross-sectional area as the phase conductors when they are made of the same metal.

To effectively suppress radiated and conducted radio-frequency emissions, the shield conductivity must be at least $1 / 10$ of the phase conductor conductivity. The requirements are easily met with a copper or aluminum shield. The minimum requirement of the motor cable shield of the drive is shown below. It consists of a concentric layer of copper wires. The better and tighter the shield is, the lower the emission level and bearing currents.


## C.2.2 Control cables

All analog control cables and the cable used for the frequency input must be shielded. Use a double-shielded twisted pair cable (Figure a) for analog signals. Employ one individually shielded pair for each signal. Do not use common return for different analog signals.


A double-shielded cable is the best alternative for low-voltage digital signals, but a single-shielded or unshielded twisted multi-pair cable (Figure b) is also usable. However, for frequency input, always use a shielded cable.

The relay cable needs the cable type with braided metallic screen.
The keypad needs to connect with cables. It is recommended to use the screen cable on complex electrical magnetic condition.

Note: Run analog and digital signals in separate cables.
Do not make any voltage tolerance or insulation resistance tests (for example hi-pot or megger) on any part of the drive as testing can damage the drive. Every drive has been tested for insulation between the main circuit and the chassis at the factory. Also, there are voltage-limiting circuits inside the drive which cut down the testing voltage automatically.

Check the insulation of the input power cable according to local regulations before connecting to the drive.

Note: Check the insulation of the input power cables according to local regulations before connecting the cables.

| VFD model | Recommended cable size(mm ${ }^{2}$ ) |  |  |  | Screw |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | R,S,T <br> U,V,W | PE | P1 (+) | PB (+) (-) | Terminal <br> screw <br> size | Tightening <br> torque (Nm) |
| SG200-0007-4T | 2.5 | 2.5 | 2.5 | 2.5 | M5 | $2 \sim 2.5$ |
| SG200 -0011-4T | 4 | 4 | 4 | 4 | M5 | $2 \sim 2.5$ |
| SG200 -0015-4T | 6 | 6 | 6 | 6 | M5 | $2 \sim 2.5$ |
| SG200 -0018-4T | 10 | 10 | 10 | 10 | M5 | $2 \sim 2.5$ |
| SG200 -0022-4T | 10 | 10 | 10 | 10 | M6 | $4 \sim 6$ |


| SG200-0030-4T | 16 | 16 | 16 | 16 | M6 | 4~6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SG200-0037-4T | 25 | 25 | 25 | 25 | M8 | 9~11 |
| SG200-0045-4T | 25 | 16 | 25 | 25 | M8 | 9~11 |
| SG200-0055-4T | 35 | 16 | 35 | 35 | M8 | 9~11 |
| SG200-0075-4T | 50 | 25 | 50 | 50 | M10 | 18~23 |
| SG200-0090-4T | 70 | 35 | 70 | 70 | M10 | 18~23 |
| SG200-0110-4T | 95 | 50 | 95 | 95 | M10 | 18~23 |
| SG200-0132-4T | 95 | 50 | 95 | 95 | M12 | 31~40 |
| SG200-0160-4T | 150 | 70 | 150 | 150 | M12 | 31~40 |
| SG200-0185-4T | 185 | 95 | 185 | 185 | M12 | 31~40 |
| SG200-0200-4T | 185 | 95 | 185 | 185 | M12 | 31~40 |
| SG200-0220-4T | $2 \times 95$ | 95 | $2 \times 95$ | $2 \times 95$ | M12 | 31~40 |


| SG200-0250-4T | $2 \times 95$ | 95 | $2 \times 95$ | $2 \times 95$ | M12 | 31~40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SG200-0280-4T | $2 \times 150$ | 150 | $2 \times 150$ | $2 \times 150$ | M12 | 31~40 |
| SG200-0315-4T | 2×150 | 150 | $2 \times 150$ | $2 \times 150$ | M12 | 31~40 |
| SG200-0355-4T | $2 \times 185$ | 185 | $2 \times 185$ | $2 \times 185$ | M12 | 31~40 |
| SG200-0400-4T | $3 \times 150$ | $2 \times 120$ | $3 \times 150$ | $3 \times 150$ | M12 | 31~40 |
| SG200-0450-4T | $3 \times 150$ | $2 \times 120$ | $3 \times 150$ | $3 \times 150$ | M12 | 31~40 |
| SG200-0500-4T | $3 \times 185$ | $2 \times 150$ | $3 \times 185$ | $3 \times 185$ | M12 | 31~40 |
| SG200-0560-4T | $3 \times 185$ | 2×150 | $3 \times 185$ | $3 \times 185$ | M12 | 31~40 |
| SG200-0630-4T | $4 \times 185$ | $2 \times 185$ | $4 \times 185$ | $4 \times 185$ | M12 | 31~40 |
| SG200-0800-4T | $5 \times 185$ | $3 \times 185$ | $5 \times 185$ | $5 \times 185$ | M12 | 31~40 |
| SG200-1000-4T | $5 \times 185$ | $3 \times 185$ | $5 \times 185$ | $5 \times 185$ | M12 | 31~40 |

## Note:

1. It is appropriate to use the recommended cable size under $40^{\circ} \mathrm{C}$ and rated current. The wiring distance should be no more than 100 m .
2. Terminals P1, (+), PB and (-) connects the DC reactor options and parts.

## C.2.3 Routing the cables

Route the motor cable away from other cable routes. Motor cables of several drives can be run in parallel installed next to each other. It is recommended that the motor cable, input power cable and control cables are installed on separate trays. Avoid long parallel runs of motor cables with other
cables to decrease electromagnetic interference caused by the rapid changes in the drive output voltage.

Where control cables must cross power cables make sure that they are arranged at an angle as near to 90 degrees as possible.

The cable trays must have good electrical bonding to each other and to the grounding electrodes. Aluminum tray systems can be used to improve local equalizing of potential.

## C.2.4 Checking the insulation

Check the insulation of the motor and motor cable as follows:

1. Check that the motor cable is connected to the motor and disconnected from the drive output terminals $\mathrm{U}, \mathrm{V}$ and W .
2. Measure the insulation resistance between each phase conductor and the Protective Earth conductor using a measuring voltage of 500 V DC. For the insulation resistance of other motors, please consult the manufacturer's instructions.

Note: Moisture inside the motor casing will reduce the insulation resistance. If moisture is suspected, dry the motor and repeat the measurement.

## C. 3 Breaker, electromagnetic contactor and leakage protection switch

Due to the VFD output high frequency PWM voltage waveform, and the existence of distributed capacitance between IGBT and heat sink in internal VFD and the distributed capacitance between motor stator and rotor, the VFD will inevitably generate high-frequency leakage current to ground. The high-frequency leakage current will back flow to grid through the earth to interference the leakage protection switch, thus causing the leakage protection switch malfunction. This is due to the VFD output voltage characteristics inherent in the decision.

To ensure the stability of the system, it is recommended to use the VFD dedicated leakage protection switch which rated residual operation current 30 mA or more(for example, corresponds to IEC60755 Type B). If you are not using the VFD dedicated leakage protection switch caused by malfunction, try to reduce the carrier frequency, or replace the electromagnetic leakage protection switch which rated residual operating current of 200 mA or more.

It is necessary to add fuse for the avoidance of overload.
It is appropriate to use a breaker (MCCB) which complies with the VFD power in the 3-phase AC power and input power and terminals ( $\mathrm{R}, \mathrm{S}$ and T ). The capacity of the VFD should be 1.5-2 times of the rated current.

| - Due to the inherent operating principle and construction of circuit breakers, |
| :--- | :--- |
| independent of the manufacturer, hot ionized gases may escape from the breaker |
| enclosure in case of a short-circuit. To ensure safe use, special attention must be |
| paid to the installation and placement of the breakers. Follow the manufacturer's |
| instructions. |


| VFD model | Breaker (A) | Fuse (A) |
| :---: | :---: | :---: |
| SG200-0007-4T | 32 | 40 |
| SG200-0011-4T | 50 | 50 |
| SG200-0015-4T | 63 | 60 |
| SG200-0018-4T | 63 | 70 |
| SG200-0022-4T | 80 | 90 |
| SG200-0030-4T | 100 | 125 |
| SG200-0037-4T | 125 | 125 |
| SG200-0045-4T | 140 | 150 |
| SG200-0055-4T | 180 | 200 |
| SG200-0075-4T | 225 | 250 |
| SG200-0090-4T | 250 | 300 |
| SG200-0110-4T | 315 | 350 |
| SG200-0132-4T | 400 | 400 |
| SG200-0160-4T | 500 | 500 |
| SG200-0185-4T | 500 | 600 |
| SG200-0200-4T | 630 | 600 |
| SG200-0220-4T | 630 | 700 |
| SG200-0250-4T | 700 | 800 |
| SG200-0280-4T | 800 | 1000 |
| SG200-0315-4T | 1000 | 1000 |
| SG200-0355-4T | 1000 | 1000 |
| SG200-0400-4T | 1000 | 1200 |
| SG200-0450-4T | 1000 | 1200 |
| SG200-0500-4T | 1250 | 1200 |
| SG200-0560-4T | 1250 | 1400 |
| SG200-0630-4T | 1500 | 1800 |
| SG200-0800-4T | 2000 | 2200 |
| SG200-1000-4T | 2500 | 2600 |

## C. 4 Braking system

## C.4.1 Select the braking components

It is appropriate to use braking resistor or braking unit when the motor brakes sharply or the motor is driven by a high inertia load. The motor will become a generator if its actual rotating speed is higher than the corresponding speed of the reference frequency. As a result, the inertial energy of the motor and load return to the VFD to charge the capacitors in the main DC circuit. When the voltage
increases to the limit, damage may occur to the VFD. It is necessary to apply braking unit/resistor to avoid this accident happens.

| - Only qualified electricians are allowed to design, install, commission and operate |
| :---: | :--- |
| on the VFD. |
| - Follow the instructions in "warning" during working. Physical injury or death or |
| serious property may occur. |
| - Only qualified electricians are allowed to wire. Damage to the VFD or braking |
| options and part may occur. Read carefully the instructions of braking resistors or |
| units before connecting them with the VFD. |
| - Do not connect the braking resistor with other terminals except for PB and (-). Do |
| not connect the braking unit with other terminals except for (+) and (-). Damage to |
| the VFD or braking circuit or fire may occur |

SG200 series VFDs of the 0037 and lower models need internal braking units and the VFDs of the 0045 and higher models need external braking units. Please select the resistance and power of the braking resistors according to actual utilization.

## Note:

Select the resistor and power according to the provided data.
The braking torque may increase because of the raising of braking resistor. The below table is calculated at $100 \%$ of the braking torque, $10 \%, 50 \%$ and $80 \%$ of the braking usage ratio. The user can select according to the actual working.

Refer to the operation instructions of braking units when using external units for right setting of voltage degree. Otherwise normal operation of the VFD may be impacted.

| VFD model | Braking unit type | $100 \%$ of braking torque ( $\Omega$ ) | The consumed power of the braking resistor |  |  | Mini Braking Resistor ( $\Omega$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} 10 \% \\ \text { braking } \end{gathered}$ | $\begin{gathered} \text { 50\% } \\ \text { braking } \end{gathered}$ | $\begin{gathered} 80 \% \\ \text { braking } \end{gathered}$ |  |
| SG200-0007-4T | Internal braking unit | 89 | 0.75 | 4.1 | 6.6 | 60 |
| SG200-0011-4T |  | 65 | 1.1 | 5.6 | 9 | 47 |
| SG200-0015-4T |  | 44 | 1.7 | 8.3 | 13.2 | 31 |
| SG200-0018-4T |  | 32 | 2 | 11 | 18 | 23 |
| SG200-0022-4T |  | 27 | 3 | 14 | 22 | 19 |
| SG200-0030-4T |  | 22 | 3 | 17 | 26 | 17 |
| SG200-0037-4T |  | 17 | 5 | 23 | 36 | 17 |


| SG200-0045-4T | External braking unit | 13 | 6 | 28 | 44 | 11.7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SG200-0055-4T |  | 10 | 7 | 34 | 54 | 6.4 |
| SG200-0075-4T |  | 8 | 8 | 41 | 66 |  |
| SG200-0090-4T |  | 6.5 | 11 | 56 | 90 |  |
| SG200-0110-4T |  | 5.4 | 14 | 68 | 108 | 4.4 |
| SG200-0132-4T |  | 4.5 | 17 | 83 | 132 |  |
| SG200-0160-4T |  | 3.7 | 20 | 99 | 158 | 3.2 |
| SG200-0185-4T |  | 3.1 | 24 | 120 | 192 | 2.2 |
| SG200-0200-4T |  | 2.8 | 28 | 139 | 222 |  |
| SG200-0220-4T |  | 2.5 | 30 | 150 | 240 |  |
| SG200-0250-4T |  | 2.2 | 33 | 165 | 264 | 1.8 |
| SG200-0280-4T |  | 2.0 | 38 | 188 | 300 |  |
| SG200-0315-4T |  | 3.6*2 | 21*2 | 105*2 | 168*2 | 2.2*2 |
| SG200-0355-4T |  | 3.2*2 | 24*2 | 118*2 | 189*2 |  |
| SG200-0400-4T |  | 2.8*2 | 27*2 | 132*2 | 210*2 |  |
| SG200-0450-4T |  | 2.4*2 | 30*2 | 150*2 | 240*2 |  |
| SG200-0500-4T |  | 2.2*2 | 34*2 | 168*2 | 270*2 | $1.8 * 2$ |
| SG200-0560-4T |  | 2*2 | 38*2 | 186*2 | 300*2 |  |
| SG200-0630-4T |  | * | * | * | * |  |
| SG200-0800-4T |  | * | * | * | * |  |
| SG200-1000-4T |  | * | * | * | * |  |

* Contact SGT at the time of ordering

| - Never use a brake resistor with a resistance below the minimum value specified |
| :---: | :--- |
| for the particular drive. The drive and the internal chopper are not able to handle |
| the overcurrent caused by the low resistance. |

## C.4.2 Select the brake resistor cables

Use a shielded cable to the resistor cable.

## C.8.3 Place the brake resistor

Install all resistors in a place where they will cool.


- The materials near the brake resistor must be non-flammable. The surface temperature of the resistor is high. Air flowing from the resistor is of hundreds of degrees Celsius Protect the resistor against contact

Installation of the braking resistor:

- The 0037 and lower models only need external braking resistors. - PB and $(+)$ are the wiring terminals of the braking resistors.


Signal installation is as below:


SAMAN GOSTAR CO, LTD

